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ABSTRACT 

This article is the eighth part of the scientific project under the general title "Geometrized Vacuum Physics Based 
on the Algebra of Signature" (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a). In this 

article, proposed metric-dynamic models of "electron" and "positron", which move with constant speed relative to 

vacuum, stable curvatures of which they themselves are. It is shown that the obtained results are applicable to 
all "baryons" and "mesons" included in the Standard Model of elementary particles. Model concepts of induction 

of toroidal-helical vortices around the direction of motion of "particles" and "antiparticles" made it possible to give 
a completely geometrized explanation of such phenomena as the motion of atomic bodies by inertia (without 

involving the concept of mass), inertial electric current and inertial electromagnetic field. Like the entire project, 

this research is aimed at a partial implementation of the Clifford-Einstein-Wheeler program of complete geometri-
zation of physics. 

 
 

RESUMEN 

Este artículo es la octava parte del proyecto científico bajo el título general "Física del vacío geometrizada basada 

en el álgebra de firmas" (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a). En este artículo 

se proponen modelos métrico-dinámicos del “electrón” y del “positrón”, que se mueven con velocidad constante 
respecto al vacío, cuyas curvaturas estables son ellos mismos. Se demuestra que los resultados obtenidos son 

aplicables a todos los "bariones" y "mesones" incluidos en el Modelo Estándar de partículas elementales. Los 
conceptos modelo de inducción de vórtices toroidales-helicoidales alrededor de la dirección de movimiento de 

"partículas" y "antipartículas" permitieron dar una explicación completamente geometrizada de fenómenos tales 
como el movimiento de cuerpos atómicos por inercia (sin involucrar el concepto de masa), corriente eléctrica 

inercial y campo electromagnético inercial. Al igual que todo el proyecto, esta investigación tiene como objetivo 

una implementación parcial del programa Clifford-Einstein-Wheeler de geometrización completa de la física. 
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BACKGROUND AND INTRODUCTION 

 

This paper is the eighth in a series of articles under the general title "Geometrized Vacuum Physics (GVPh) Based 
on the Algebra of Signature (AS)". The previous seven articles are listed in the references (Batanov-Gaukhman, 

2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a). 
 

The paper (Batanov-Gaukhman, 2024a) presented metric-dynamic models of a free resting "electron" and a free 
resting "positron" and considered the quasi-stationary interaction between them. 

 

By quasi-stationary interaction was meant the evaluation of the averaged effect of the outer shell of one stationary 
"particle" (in particular, an "electron" or "positron") on the core of another stationary "particle" depending on the 

distance between their centers. In this case, the cause of such an effect are accelerated intra-vacuum currents 
(i.e., subcont and antisubcont flows twisted into spirals) (see §10 in (Batanov-Gaukhman, 2024a)). 

 

Let’s remind once again that within the framework of Geometrical Vacuum Physics (GVPh) we do not know 
whether intra-vacuum subcont-antisubcont currents exist in reality, or whether these accelerated subcont and 

antisubcont flows are a figment of the imagination, inspired by the mathematical apparatus. However, if we do 

not connect the zero components of metric tensors with local flows of various layers of -12,-15-vacuum, then it is 

practically impossible to verbally describe the processes under study. This is not the first time in science, for 

example, we do not know whether harmonic additive components (i.e. sinusoids and cosine waves) exist inside 

complex electrical signals, but this does not prevent the successful application of spectral analysis in many 
branches of radio engineering. 

 
We note another important circumstance: the GVPh does not have the concept of mass (m). Therefore, within the 
framework of a fully geometrized theory, it is impossible to formulate the concept of force F in the Newtonian 

sense, i.e. as the product of mass and acceleration (F = ma). In the theory proposed here, if the core of a "particle" 

moves with acceleration, it is implied that it is not acted upon by some abstract force, but either by an accelerated 
vacuum flow, or by a gradient of intra-vacuum tension or pressure from the cores of other moving "particles". 

 
This article examines a moving free valence "electron" and a moving free valence "positron". In the previous 

article (Batanov-Gaukhman, 2024a) it was noted that there are no separately existing "electrons" and "positrons", 

since they can only arise from a vacuum together and are in constant interaction. However, for simplicity, in this 
article the motion of these "particles" is examined separately. First, the moving "electron" is studied, and then, by 

analogy, the moving "positron" is investigated. 
 

Two cases should be distinguished: 

 
1) The motion of an "electron" (or "positron") relative to an outside observer together with a moving vacuum 

region, of which it is a deformation. In this case, a moving coordinate system must be used, while the shape 
of the "electron" and the processes inside it must remain unchanged. In other words, in this situation, the 

metric-dynamic model of the "electron" (or "positron") continues to be determined by the set of metrics-

solutions (1) or (11) in (Batanov-Gaukhman, 2024a), but the coordinate system ct, r, θ, ϕ must move relative 

to a stationary observer. A separate study of such a motion of the "electron" (or "positron") is required to 
assess whether it leads to any physical consequences. However, in this article we will focus on the second 

case. 

 
2) The movement of an "electron" (or "positron") relative to a vacuum region, of which it is a stable curvature. In 

this case, the shape of the "electron" (or "positron") and the processes inside it change, since in this situation 
the rapidly moving "electron" (or "positron") experiences resistance from the surrounding stationary vacuum. 
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Before reading this work, it is most productive to first familiarize yourself with the previous articles of this project 

(Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a), since the GVPh uses a number of terms 

and axioms that were introduced in this theory for the first time. Without a full understanding of these concepts, 
the content of this article will be incomprehensible. To facilitate reading this article, a glossary of the main terms 

and definitions first introduced in previous articles is provided below.    
 

Glossary 
 

"Vacuum" – see §1 in (Batanov-Gaukhman, 2023a). By vacuum in the GVPh we mean the Einstein vacuum, i.e. 

emptiness in which local material objects are absent. We know nothing about the substantiality of emptiness (i.e. 
the Einstein vacuum), however, some of its properties are reliably known to us: infinity (possibly closed), bottom-

lessness (there is no limit to deepening), elastic-plasticity (i.e. the ability to bend and return to the original state), 
constant and ubiquitous variability (i.e. infinite energy saturation), fractality (repeatability of properties and qual-

ities at different levels), continuous-discreteness (i.e. continuity alternates with distinct phase and/or topological 

transitions), the speed of propagation of wave disturbances in the Einstein vacuum is equal to the speed of light. 
 

“The vacuum balance condition” – (see §1 in (Batanov-Gaukhman, 2023a)) states that if something appears 
from a vacuum (i.e. emptiness), it is necessarily in a mutually opposite form (for example, convexity-concavity, 

wave-antiwave, particle-antiparticle, etc.) so that the opposites, on average, completely compensate for each 

other’s manifestations.  
 

“m,n-vacuum” – (see §1 (Batanov-Gaukhman, 2023a)) from the above it is clear that “vacuum” (emptiness) is 

an infinitely complex entity that is extremely difficult to sense and define. Therefore, within the framework of the 
GVPh it is proposed: on the one hand, to apply analysis as a philosophical method of cognition, i.e. to break down 

the vacuum, as an infinitely complex entity, into an infinite number of less complex components, and to study 

them separately; on the other hand, to objectify the subject of study, i.e. to study what can be observed at an 
acceptable level of reliability. The application of these two general scientific methodological techniques is realized 

through the introduction of the concept of m,n-vacuum. If we simultaneously probe a certain area of vacuum from 

three mutually perpendicular directions with monochromatic light beams with a wavelength m,n from the wave-

length range Δ =10m – 10n cm (in particular, laser beams, see Figure 1a in (Batanov-Gaukhman, 2023a)), we will 

obtain a light cubic lattice, which can be interpreted as a 3-dimensional light landscape. This 3D light landscape 

in the GPV is conventionally called the m,n-vacuum. Thus, the m,n-vacuum is a 3-dimensional space that is illu-

minated from the void by mutually perpendicular light beams with a wavelength of m,n. If the vacuum in a given 

region is distorted, with curvatures approximately an order of magnitude greater than the wavelength of the 

probing beams, then the 3-dimensional landscape (i.e. the m,n-vacuum) will also be curved (see Figure 4 in 

(Batanov-Gaukhman, 2023a)). In this case, the light rays are geodesics of this curved 3-dimensional landscape. 

It may be objected that light rays are not visible in a vacuum, so no 3D landscape (i.e., m,n-vacuum) is visible. 

However, the vacuum region under study can be filled with a sol (i.e., a suspension of particles approximately an 

order of magnitude smaller than the wavelength m,n of the probing rays), then the 3D light landscape becomes 

visible (see Figure 1a in (Batanov-Gaukhman, 2023a)). One could object to this that a void filled with sol is not a 
vacuum. Yes, but if the sol particles are significantly smaller than the curvatures of the void, then the distortions 

introduced by the particles will be insignificant, while larger-scale curvatures of the vacuum are clearly visible as 

m,n-vacuum. In addition, specialists know that using the radar method, it is possible to determine the curvature 

of a local section of vacuum without injecting sol. There are also other ways of measuring the curvature of light 
rays in distorted space. For example, during the eclipse of 1919, the Eddington expedition observed the deflection 

of a light ray from a star located on the limb of the Sun. If we probe the same area of emptiness with rays of 

other wavelengths m+i,n+j, in this way, we will obtain an infinite number of m,n-vacuums nested one inside the 

other (see Figs. 2 and 4 in (Batanov-Gaukhman, 2023a)). All these m,n-vacuums are obey the same laws, but at 

the same time they all highlight different 3D landscapes, since the diameter of the light rays (i.e. eikonals) depends 

on their wavelength m,n (see Fig. 3 in (Batanov-Gaukhman, 2023a)), and the vacuum fluctuations are averaged 

within the thickness of the probing beam. The decomposition of the "vacuum" into an infinite number of                           
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m,n-vacuums in the GPV is called its longitudinal stratification. At the same time, each m,n-vacuum splits into an 

infinite number of metric spaces and subspaces with 16 types of signatures (i.e. with 16 types of topologies). The 

description of one of the m,n-vacuums is devoted to the articles (Batanov-Gaukhman, 2023a, 2023b, 2023c, 

2023d). Such a splitting of each m,n-vacuum in the GVPh is called a transverse bundle of the "vacuum". Thus, the 

"vacuum" is an extremely complex structure consisting of an infinite number of intertwined transverse and longi-

tudinal layers. 
 

"-12,-15-вакуум" is a 3D-12,-15-landscape illuminated from a "vacuum" by mutually perpendicular light beams with 

a wavelength of -12,-15 from the range Δ = 10–12 10–15 cm. In articles (Batanov-Gaukhman, 2023e, 2023f, 2024a) 

and in this article, the greatest attention is paid to this -12,-15-vacuum, since in such a curved 3D-12,-15-landscape, 

the averaged contours of elementary "particles" are clearly visible: "quarks", "leptons", "baryons", "mesons", "at-

oms", etc. (see articles (Batanov-Gaukhman, 2023f, 2024a). This longitudinal layer of "vacuum" has been studied 
most fully, therefore GVPh begins demonstrating the possibilities of stochastic differential geometry and the Alge-

bra of signature precisely with the consideration of metric-dynamic models of elementary "particles". However, as 

shown in the article (Batanov-Gaukhman, 2023f), in the infinite thickness of "vacuum" there are discrete levels 

that are fractally similar to each other. Therefore, studying on average stable spherical formations in -12,-15-

vacuum, we, in addition, obtain certain knowledge about the average structure of stable spherical vacuum for-

mations in 7,10-vacuum (i.e. about "planets" and "stars") and in 17,20-vacuum (i.e. about "galaxies"), etc. 

 

"Subcont" and "antisubcont" (see §7 in (Batanov-Gaukhman, 2023b) and §4 in (Batanov-Gaukhman, 2023c)) 

– as already noted, each m,n-vacuum splits into an infinite number of metric spaces and subspaces with 16 types 

of signatures (i.e. with 16 types of topologies). However, in the Algebra of signature it is shown that these spaces 

are superimposed on each other (i.e. added or averaged) in such a way that at the first step (i.e. the zero level 
of consideration) they completely compensate each other's manifestations, i.e. their sum (or averaging) is zero 

(see the ranking Ex. (38) in (Batanov-Gaukhman, 2023b)) – this is the expression of the properties of the "vacuum" 

(bottomless emptiness). At the second step (i.e. at the two-sided level of consideration) the metric spaces are 

summed (or averaged) in such a way (see §7 in (Batanov-Gaukhman, 2023b)) that from the “vacuum” a 23-m,n-
vacuum is revealed, which has two adjacent sides: 1) the Minkowski 4-space with the signature (+ – – –), con-

ventionally called the outer side of the m,n-vacuum (or, for brevity and clarity, subcont); 2) the Minkowski               

4-antispace with the opposite signature (– + + +), conventionally called the inner side of the m,n-vacuum (or, for 

brevity and clarity, antisubcont). The concepts of subcont (short for “substantial continuum”) and antisubcont 

(short for “antisubstantial continuum”) are speculative and auxiliary. They create the illusion of intertwined elastic-
plastic continuous media (conditionally white and black, §4 in (Batanov-Gaukhman, 2023c)) and are intended 

mainly to visualize and verbally describe the studied intra-vacuum processes at the second level of consideration. 
 

The "substrate" of a stable vacuum formation is a model of the metric-dynamic state of one of the sides of the 

m,n-vacuum before deformations arose in this region. That is, the substrate is a kind of memory of the "vacuum" 

about the initial state of some of its regions, with which the deformed state of the same region is compared. 
 

Valence "particle" (in particular, valence "electron" or "positron") - the concept, for example, valence 
"electron" was introduced in §5 in (Batanov-Gaukhman, 2024a). In the framework of the GVPh, the "electron" is 

an infinitely complex stable spherical vacuum formation. However, this is a stepwise complexity that can be reg-

ulated by averaging and fixing the level of consideration. The simplest of all possible levels of consideration is 
called the valence "electron" (or "positron", or "quark", or "proton", or "neutron", etc.). 

 
The principle of "Fair distribution" - this fundamental principle is introduced in §1.5 in (Batanov-Gaukhman, 

2023e). This principle, as applied to the GPhV in a broad sense, means that it is necessary to take into account all 
solutions of mathematical equations. In a narrow sense, this principle says that it is necessary to take into account 

all possible metric solutions of the Einstein vacuum equations obtained under the same conditions. The GVPh 

proposes two main methods for taking into account all similar metric solutions: 1) arithmetic averaging of the 
components of the metric tensor with the same indices when determining local deformations of the "vacuum"; 2) 
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root-mean-square averaging when determining the acceleration of intertwined intra-vacuum currents (flows) of 

the "vacuum". 

 
Atomistic body – as noted in §4.13 in (Batanov-Gaukhman, 2023f), an atomistic body in the GVPh is understood 

to be a dense mixed union of “particles” and “antiparticles” (in particular, “electrons” and “positrons”, “protons” 
and “antiprotons”, “neutrons”, etc.). Baryon asymmetry of matter is absent in this hypothesis. The reason that 

“particles” and “antiparticles” in an atomistic body do not annihilate is presumably related to their complex (topo-
logical, or nodal) interweaving, mixing, and constant participation in thermal (chaotic) motion (i.e. the presence 

of conserved inertia of motion and rotation). 

 
MATERIALS AND METHOD 

 
1 Uniform and rectilinear motion of a free “electron” relative to a stationary vacuum 

 

The motion of stable local disturbances in liquid and gaseous media, of 
which they themselves consist, is of two types (Figure 1): 

1) self-consistent solitons; 
2) toroidal vortices. 

 
A moving "electron" has a combination of properties of a soliton and a 

rotating toroid. Firstly, a stationary "electron" is a self-consistent soliton in 

which the deformations of the -12,-15-vacuum are maintained by acceler-

ated subcont flows (Batanov-Gaukhman, 2024a). Secondly, by analogy 
with similar natural processes, the motion of the "electron" core should 

entrain the surrounding -12,-15-vacuum into a toroidal rotational motion 

(Figure 2). 

                                     
Fig. 2: Schematic representation of the motion of an “electron” in 

 a -12,-15-vacuum, of which it is a deformation 

 
That is, it is expected that with the rectilinear uniform motion of a free "electron", relative to the -12,-15-vacuum 

of which it itself consists, its outer shell and core should rotate around an axis that itself processes (rotates) 
around the direction of motion. In this case, it is expected that the outer shell of the "electron" takes the form of 
a toroidal vortex (toroid), moving in the direction of the Z axis, and the core should take the form of an elongated 

ellipsoid (see Figure 2)  

                                                          

 𝑥2

𝑟𝑞
2(1− 𝑉𝑧

2/𝑉max 
2 )

+
𝑦2

𝑟𝑞
2(1− 𝑉𝑧

2/𝑉max 
2 )

+
𝑧2

𝑟𝑞
2 = 1,

                                                                                                                                                      (1)    

 
where 
rq   is the radius of the initial sphere, 

Vz  is the velocity of the ellipsoid in the direction of the Z axis, 

Vmax is the velocity of propagation of disturbances in the medium of which this toroid consists. In particular, for a 

vacuum this velocity is equal to the speed of light (Vmax = c). 

 

 
  

Fig. 1: Schematic representation of a 
soliton and the translational motion 
of a toroidal vortex (toroid) in a gas-

eous medium 
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2 Outer shell of a moving free "electron" 

 

2.1 Ellipticity parameter 
 

Let’s consider a simplified case where the outer shell of a uniformly and rectilinearly moving "electron" rotates 
around an axis that does not precess around the direction of its motion. We assume that in this model represen-

tation the outer shell of a moving "electron" is described not by the Schwarzschild metrics (24) and (25) in (Ba-
tanov-Gaukhman, 2024a), but by the corresponding Kerr metrics in Boyer-Lindquist coordinates 

 

for the a-subcont: 
                                                                                                                                                                                             

𝑑𝑠1
(+𝑎)2

= (1 −
𝑟6𝑟

𝜌(+𝑎)
) 𝑐2𝑑𝑡2 −

𝜌(+𝑎)2𝑑𝑟2

Δ(+𝑎)
− 𝜌(+𝑎)𝑑𝜃2 − (𝑟2 + 𝑎𝑎

2 +
𝑟6𝑟𝑎𝑎

2

𝜌(+𝑎)
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎𝑎

𝜌(+𝑎)
𝑠𝑖𝑛2 𝜃 𝑐𝑑𝑡𝑑𝜙,  (2)   

 

where   (+a) = 𝑟2 + 𝑎𝑎
2𝑐𝑜𝑠2,    (+a) = r 2 + аa

2 – r6 r;                                                                                                                    

 

for the b -subcont: 

                                                                                                                                                                                             

𝑑𝑠2
(+𝑏)2

= (1 +
𝑟6𝑟

𝜌(+𝑏)
) 𝑐2𝑑𝑡2 −

𝜌(+𝑏)2𝑑𝑟2

Δ(+𝑏)
− 𝜌(+𝑏)𝑑𝜃2 − (𝑟2 + 𝑎𝑏

2 −
𝑟6𝑟𝑎𝑏

2

𝜌(+𝑏)
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎𝑏

𝜌(+𝑏)
𝑠𝑖𝑛2 𝜃 𝑐𝑑𝑡𝑑𝜙,  (3)           

                                                                                                             

where    (+b) = r2 + аb
2cos2 ,    (+b) = r 2 + аb

2 + r6 r, 

 
аa is the ellipticity parameter for the a-subcont (see below), 

аb is the ellipticity parameter for the b-subcont. 
 

Metrics (2) and (3) are exact solutions of the Einstein vacuum equation (42) in (Batanov-Gaukhman, 2023e) 
(𝑅𝑖𝑘 = 0) for the case of a constantly rotating stable spherical vacuum formation. These metrics-solutions were 
discovered by Roy Kerr in 1963 (Batanov-Gaukhman, 2023f), but in the form (2) they were first given by Boyer 
and Lindquist in 1967. 
 

The metric (3), defining the metric-dynamic state of the b-subcont, is obtained by replacing all r6 with – r6  in the 

metric (2), defining the metric-dynamic state of the a-subcont (just as the metric (25) in (Batanov-Gaukhman, 

2024a) is obtained from the metric (24) in (Batanov-Gaukhman, 2024a)). 
 

The radius r6 is taken from the discrete hierarchy of radii (44a) in (Batanov-Gaukhman, 2023f). 
 

For ellipticity parameters аa = аb = 0, the Kerr metrics (2) and (3) transform into the Schwarzschild metrics (24) 

and (25) in (Batanov-Gaukhman, 2024a), respectively, and for r6 = 0, these metrics become Galilean: 

 

𝑑𝑠1
(+𝑎)2

= 𝑐2𝑑𝑡2 −
𝜌(+𝑎)𝑑𝑟2

𝑟2+𝑎𝑎
2 − 𝜌(+𝑎)𝑑𝜃2 − (𝑟2 + 𝑎𝑎

2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                   (4)  

 

𝑑𝑠2
(+𝑏)2

= 𝑐2𝑑𝑡2 −
𝜌(−𝑏)𝑑𝑟2

𝑟2+𝑎𝑏
2 − 𝜌(+𝑏)𝑑𝜃2 − (𝑟2 + 𝑎𝑏

2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                   (5)    

 
Let’s demonstrate this using the metric as an example. For example, the metric (4) is indeed Galilean 

 

ds2 = с2dt2  – dx2 – dy2 – dz2,                                                                                                                    (6)    

 
in spatially flattened coordinates. To demonstrate this, we introduce the coordinates 
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𝑥 = √𝑟2 + 𝑎𝑎
2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙,                                                                                                                    (7)                                                                                                                                             

𝑦 = √𝑟2 + 𝑎𝑎
2 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙, 

𝑧 = 𝑟 𝑐𝑜𝑠 𝜃.         

In these coordinates, the metric (4) takes the form of the Galilean metric (6). In this case, the surfaces r = const 
are oblate ellipsoids of revolution, described by the equation 
 
𝑥2

𝑟2+𝑎𝑎
2 +

𝑦2

𝑟2+𝑎𝑎
2 +

𝑧2

𝑟2
= 1.                                                                                                                        (8) 

 

Comparing Exs. (1) and (8), we find that the parameter aa, which determines the degree of ellipticity of a moving 
stable subcont formation, can be determined as follows: 
                 

𝑎𝑎 = ±𝑟𝑞
𝑉𝑧

𝑐
 ,                                                                                                                                      (9)     

 
let's call it the a-subcont ellipticity parameter. 

 
Similarly, for the metric (3), which describes the behavior of the b-subcont, we obtain the b-subcont ellipticity 

parameter 
 

𝑎𝑏 = ∓𝑟𝑞
𝑉𝑧

𝑐
 .                                                                                                                                     (11)    

 

On the other hand, the ellipticity parameters aa and ab can be determined from the following considerations. 

 

The component 𝑔11, for example, of the metric (2) becomes infinite at  (+a) = r2 + 𝑎𝑎
2 – r6 r = 0, from which we 

find the radius of the a-subcont horizon (Vladimirov, 2005) 
       

𝑟0 =
𝑟6

2
± √(

𝑟6

2
)
2

− 𝑎𝑎
2.                                                                                                                        (12)    

 

In turn, the component 𝑔00 of the same metric (2) vanishes at (+a)2 = r2 + аa
2cos2 = r6 r, from this expression 

we can determine the radius of the surface of infinite redshift (Vladimirov, 2005) 
 

𝑟𝑠 =
𝑟6

2
± √(

𝑟6

2
)
2

− 𝑎𝑎
2 𝑐𝑜𝑠2 𝜃.                                                                                                               (13)    

 
From Exs. (12) and (13) it follows that the subcont ellipticity parameter 𝑎𝑎 cannot exceed the limiting value (Vla-

dimirov, 2005) 
 

  𝑎𝑎 𝑚𝑎𝑥 =  
𝑟6

2
.                                                                                                                                 (14) 

 

According to Ex. (9), the maximum value of the parameter 𝑎𝑎 is achieved at Vz = с. In this case, when comparing 

Exs. (9) and (14), we obtain the correspondence 𝑟𝑞 ≡
𝑟6

2
 . This allows us to finally determine the values of the 

ellipticity parameters 
 

𝑎𝑎 = ±
𝑟6𝑉𝑧

2𝑐
= ±

𝑟6
2𝜔𝑧

2𝑐
      –  for the a-subcont,                                                                                       (15)        

 

𝑎𝑏 = ∓
𝑟6𝑉𝑧

2𝑐
= ∓

𝑟6
2𝜔𝑧

2𝑐
       –  for the b-subcont,                                                                                      (16) 
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where 𝜔𝑧 =
𝑉𝑧

𝑟6
  is the angular velocity of rotation of a sphere with radius r6.                                           (17) 

 

The quantity 𝐿𝑒 =
𝑟6
2𝜔𝑧

2
 is an analogue of the angular momentum of a solid disk of radius r6 rotating with an 

angular velocity 𝜔𝑧. Therefore, the parameters of a-subcont and b-subcont ellipticity can be represented as 
 

𝑎𝑎 = ±
𝐿𝑒

𝑐
   and  𝑎𝑏 = ∓

𝐿𝑒

𝑐
 .         

      
 

2.2 Metric-dynamic model of the outer shell of a moving free "electron" 
 
The above analysis, taking into account the principle of "Fair distribution" (see §1.5 in (Batanov-Gaukhman, 

2023e)), allows us to propose the following most complete set of Kerr metrics-solutions to the Einstein vacuum 

equation for constructing a metric-dynamic model of the outer shell of a free valence "electron" that moves recti-

linearly and uniformly (i.e. with a constant velocity 𝑉𝑧) in a -12,-15- vacuum, of which it is a stable curvature.      
 
 

"ELECTRON" 
moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of the Z axis 

 
The outer shell of a free valence "electron", 

                                               moving rectilinearly and uniformly (Figure 2)                                  (20) 
in the interval [r4, r6], signature (+ – – –) 

 

  I     𝑑𝑠1
(+𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,       (21)   

  H    𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,       (22)    

  V    𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,       (23) 

  H′   𝑑𝑠4
(+𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;       (24)     

The substrate of "electron" 
uniformly and rectilinearly moving, see metrics (4) and (5), 

r  [0, ], signature (+ – – –) 

    i                                       𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 −
𝜌𝑑𝑟2

𝑟2+𝑎2
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                (25)  

 

where   𝜌 = 𝑟2 + 𝑎2𝑐𝑜𝑠2 ,       (a) = r2 – r6 r + a2,         (b) = r2 + r6 r + a2; 

 

           𝑎 =
𝑟6𝑉𝑧

2𝑐
   is the ellipticity parameter.                                                                                    (25′) 

 

Similarly, we obtain the following completely opposite set of Kerr metric solutions for the metric-dynamic model 
of the outer shell of a free valence “positron” moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of 

the Z axis 
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"POSITRON"  
moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of the Z axis 

 
The outer shell of a free valence "positron", 

                                         moving rectilinearly and uniformly (negative Figure 2)                             (26) 

in the interval [r4, r6], signature (– + + +)  

H′     𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (27)   

V      𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (28)    

H      𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (29) 

 I      𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;    (30) 

The substrate of "positron" 
uniformly and rectilinearly moving, 

in the interval r  [0, ], signature (– + + +)  

 i                                         𝑑𝑠5
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                               (31) 

 
The sets of metrics (20) and (26) when added (or averaged) completely compensate each other's manifestation 
 
1

10
(𝑑𝑠1

(+𝑎1)2
+ 𝑑𝑠2

(+𝑎2)2
+  𝑑𝑠3

(+𝑏1)2
+ 𝑑𝑠4

(+𝑏2)2
+ 𝑑𝑠5

(+)2
+ 𝑑𝑠1

(−𝑎1)2
+ 𝑑𝑠2

(−𝑎2)2
+  𝑑𝑠3

(−𝑏1)2
+ 𝑑𝑠4

(−𝑏2)2
+ 𝑑𝑠5

(−)2
) = 0,                       (32)           

 
which corresponds to the vacuum balance condition (see the glossary in the Introduction or §1 in (Batanov-Gaukhman, 

2023a)). 

 
All metrics (21) – (25) and (27) – (31) are solutions of the Einstein vacuum equation (i.e., satisfy the conservation 

condition, see §1 in (Batanov-Gaukhman, 2023e)), which essentially means (as has been noted more than once 
in (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a)) that these solutions describe, on 

average, stable vacuum formations. Only in this case, on average, stable vacuum formations are not at rest, but 

move rectilinearly and uniformly with a constant velocity relative to the -12,-15-vacuum of which they themselves 

consist (i.e., of which they are stable curvatures). 
 

3 Deformations of the outer shell of a free “electron” moving at a constant speed 
 

When constructing metric-dynamic models of the outer shell of a moving "electron" and a moving "positron" based 
on sets of metrics (21) – (25) and (27) – (31), we use the method described in §2.8 in (Batanov-Gaukhman, 

2023e) and applied in §2 in (Batanov-Gaukhman, 2024a). First, we will consider a moving free "electron", and 

then apply the obtained results by analogy to the description of a moving free "positron". 
 

We average the metrics (21) – (24), as a result we obtain        
                                                                                                                                                                               

𝑑𝑠12
(+)2

=
1

4
(𝑑𝑠1

(+𝑎1)2
+ 𝑑𝑠2

(+𝑎2)2
+  𝑑𝑠3

(+𝑏1)2
+ 𝑑𝑠4

(+𝑏2)2
) = 𝑔00

(+)
𝑐2𝑑𝑡2 + 𝑔11

(+)
𝑑𝑟2 + 𝑔22

(+)
𝑑𝜃2 + 𝑔33

(+)
𝑠𝑖𝑛2 𝜃 𝑑𝜙2 + 𝑔03

(+)
𝑑𝜙𝑐𝑑𝑡, (33)                                                                                                                           

 
where 

𝑔00
(+)
=
1

4
(𝑔00

(+𝑎1)
+ 𝑔00

(+𝑎2)
+ 𝑔00

(+𝑏1)
+ 𝑔00

(+𝑏2)
) =

1

2
(1 −

𝑟6𝑟

𝜌
+ 1 −

𝑟6𝑟

𝜌
+ 1 +

𝑟6𝑟

𝜌
+ 1 +

𝑟6𝑟

𝜌
) = 1,                             (34) 

 

𝑔11
(+)
= −

1

4
(
𝜌

Δ(𝑎)
+

𝜌

Δ(𝑎)
+

𝜌

Δ(𝑏)
+

𝜌

Δ(𝑏)
) = −

(𝑟2+𝑎2𝑐𝑜𝑠2 )(𝑟2+𝑎2)

(𝑟2−𝑟6𝑟+𝑎
2)(𝑟2+𝑟6𝑟+𝑎

2)
 ,  
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𝑔22
(+)
= −

1

4
(𝜌 + 𝜌 + 𝜌 + 𝜌) = −𝜌 = − (𝑟2 + 𝑎2𝑐𝑜𝑠2) ,  

 

𝑔33
(+)
= −

1

4
[2 (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝜌
) + 2 (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝜌
)] 𝑠𝑖𝑛2 𝜃 = −(𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃,   

 

𝑔03
(+)
=
1

4
(
2𝑟6𝑟𝑎

𝜌
−
2𝑟6𝑟𝑎

𝜌
+
2𝑟6𝑟𝑎

𝜌
−
2𝑟6𝑟𝑎

𝜌
) 𝑠𝑖𝑛2 𝜃 = 0,  

 

other components  𝑔𝑖𝑗
(+)
= 0.  

 

Components of the metric tensor 𝑔𝑖𝑗0
(+)  from the metric of the moving "electron" substrate (25): 

                                                                                                                                                                                     

𝑔000
(+) = 1,     𝑔110

(+) = −
𝜌(+)

𝑟2+𝑎2
= −

𝑟2+𝑎2𝑐𝑜𝑠2

𝑟2+𝑎2
,     𝑔220

(+) = −𝜌(+) = − (𝑟2 + 𝑎2𝑐𝑜𝑠2) ,      𝑔330
(+) = −(𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃.   (35)                                              

 

 
Let’s consider the deformations of the outer side of the                             

-12,-15-vacuum (i.e. the subcont) arising in the outer shell of a free 

“electron” moving with a constant velocity Vz in the direction of the 

Z axis. 

 
We will judge the deformations of the subcont by the relative elon-

gation (47) in (Batanov-Gaukhman, 2023c) 
 

𝑙𝑖
(+)
= √1 +

𝑔
𝑖𝑖
(+)
−𝑔𝑖𝑖0

(+)

𝑔𝑖𝑖0
(+) − 1 = √

𝑔
𝑖𝑖
(+)

𝑔𝑖𝑖0
(+) − 1.                                  (36) 

 

Let’s substitute components (34) and (35) into the expression for 

relative elongation (36), and as a result, for three spatial directions 
we obtain   

 

𝑙𝑟
(+)
=

𝑟

𝑟
= √

(𝑟2+𝑎2)2

(𝑟2−𝑟6𝑟+𝑎
2)(𝑟2+𝑟6𝑟+𝑎

2)
− 1,      𝑙𝜃

(+) = 0,     𝑙𝜙
(+) = 0,   (37)   

 

where 𝑎 =
𝑟6𝑉𝑧

2𝑐
  is the ellipticity parameter. 

 
 

The graph of the relative elongation function of the subcont in the 

radial direction 𝑙𝑟
(+)
= 𝑟/𝑟 (37) with the conventionally accepted 

r6 = 1 and  Vz /с = 0.007, Vz /с = 0.0007 and Vz /с = 0.00007 is 

shown in Figure 3. From which it is clear that with a change in the 

ratio Vz /с (i.e. with a change in the speed of rectilinear and uniform 

motion of a stable vacuum formation), the deformation of the outer 
shell relative to its curved substrate does not change. 

 

However, with an increase in the speed Vz, the substrate of the 

moving “electron”, according to Exs. (4) – (11), acquires the shape 
of an increasingly flattened ellipsoid of revolution (Figure 4). 

4 Flows in the outer shell of an “electron” and a “positron” moving rectilinearly and uniformly 

 
Fig. 3: Graph of the function of relative 

elongation of the outer side of the -12,-15-
vacuum (i.e. subcont) in the outer shell of a 

moving “electron” in the radial direction 

(37) 𝑙𝑟
(+)
= 𝑟/𝑟 at r6 = 1 and  Vz /с =0.007,                       

Vz /с = 0.0007,  Vz /с = 0.00007 

 

     
 

                 a)                         b)                 

Fig. 4: As the velocity Vz of the rectilinear 

motion of the "electron" increases, the geo-
desic lines of the "electron" substrate take 
the form of an increasingly flattened ellip-

soid (spheroid) of rotation. 
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4.1 Estimation of the velocity of movement of a subcont in the outer shell of a moving “electron” 

 
Let’s consider the radial component of the velocity of the a1-subcont in the outer shell of a moving "electron". To 

do this, similar to how this was done for the outer shell of a stationary "electron" (see §2.2.1 in (Batanov-Gau-
khman, 2024a)), we compare the dynamic metric (38) and the kinematic metric (96) in (Batanov-Gaukhman, 

2023c) 
 

𝑑𝑠(+)2 = (1 −
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 + 2𝑣𝑟𝑑𝑟𝑑𝑡 − 𝑑𝑟

2 − 𝑟2𝑑𝜃2−𝑟2𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                           (38)                                                                   

 

this is more suitable for this case. 
 

We identically equate the zero components 𝑔00
(+𝑎1)

 of the metric (38) and 𝑔00 of the metric (41), assuming that 

𝑣𝑥 = 𝑣𝑟
(+𝑎1)

 

 

(1 −
𝑣𝑟
(+𝑎1)2

с2
) ≡ (1 −

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
).                                                                                                                                                                                                       

 
From where we find the heuristic relation 

 
𝑣𝑟
(+𝑎1)2

𝑐2
≡

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                          (39) 

 

From which follows the estimated expression for the velocity of the a1-subcont in the outer shell of the moving 

"electron" 

 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                       (43) 

 

Let’s consider the tangential component of the velocity of the a1-subcont in the outer shell of the moving "electron". 

 

In §6.2 in (Batanov-Gaukhman, 2023c) it is shown that if the front and back of the subcont rotate around the Z 
axis in the same direction with the angular velocity of rotation , then this kinematic case is described by the 

metric (99) in (Batanov-Gaukhman, 2023c) in cylindrical coordinates 
 

сt =сt ,     r 2= х2 + у2,    z = z,      = arctg(y/x) –  t,                                          
 

this metric takes the form 
 

𝑑𝑠(+)2 =  (1 − 
𝑟22

𝑐2
) 𝑐2𝑑𝑡2 −  𝑑𝑟2 − 𝑟2𝑑2 − 𝑑𝑧2 + 

2𝑟22

с
𝑑с𝑑𝑡.                                                            (41)                                                                     

 

Comparing the component 𝑔03
(+𝑎1)

 in the metric (21) and 𝑔03 in the metric (41), we find a correspondence 

 

2𝑟2𝛺

𝑐
=
2𝑟𝑣𝜙

(+𝑎1)

𝑐
≡

𝑟6𝑟𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      where    𝛺 =

𝑣𝜙
(+𝑎1)

𝑟
 ,                                                                      (42)   



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 15 (2), 1-36 (Abril/Junio, 2024) / Batanov-Gaukhman 

 

12 

 

 

from which we can obtain an estimate of the tangential component of the motion of the 

a1-subcont in the outer shell of the moving “electron” moving with velocity Vz in the di-

rection of the Z axis   

                                                                                                                            

𝑣𝜙
(+𝑎1)

≡
𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃.                                                                          (43) 

 

In the metric (21) there are no components of the metric tensor 
𝑔02  (i.e.  𝑔02 = 𝑔20 = 0) therefore 

 

𝑣𝜃
(+𝑎1)

≡ 0.                                                                     (44) 

 

Thus, we will assume that the velocity vector 𝑣⃗(+𝑎1) of the a1-sub-

cont in each local region in the outer shell of the “electron” moving 

with velocity Vz in the direction of the Z axis has components (40), 

(43), (44) 
 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,    𝑣𝜙

(+𝑎1)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,    𝑣𝜃

(+𝑎1)
≡ 0.   (45) 

 

The velocity component 𝑣𝑟
(+𝑎1)

 of the a1-subcont is associated with 

the electrical interaction, and it is very large compared to the ve-

locity component 𝑣𝜙
(+𝑎1)

 associated with the magnetic interaction. 

Therefore, it is not possible to show the total velocity field of the 

a1-subcont in one figure. Because of this, Figure 5.1 shows one of 

the sections of only the velocity field 𝑣𝜙
(+𝑎1)

. 

 

The graphs of the functions 𝑣𝑟
(+𝑎1)

(𝑟) and  𝑣𝜙
(+𝑎1)

(𝑟)  (45) depending on the distance r are shown in Figure 6.1. 

 

 
 

Fig. 6.1: Graphs of functions 𝑣𝑟
(+𝑎1)(𝑟)  and  𝑣𝜙

(+𝑎1)(𝑟) (45) 

 

 

Graphs of functions 𝑣𝑟
(+𝑎1)(𝜃) and  𝑣𝜙

(+𝑎1)(𝜃) (45) on angle θ for different values of 𝑟, 𝑉𝑧 are shown in Figure 6.2. 

 

 

 
Fig. 5.1: The cross-section of the field of 

the velocity component 𝑣𝜙
(+𝑏1)

 of the a1-

subcont. Calculations were performed us-
ing the Mathlotlib library 
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                                 a)                                            b)                                            c) 

 

Fig. 6.2: Graphs of functions 𝑣𝑟
(+𝑎1)(𝜃) and  𝑣𝜙

(+𝑎1)(𝜃) (45) for different values of parameters 𝑟, 𝑉𝑧 

 
By making similar comparisons of the components of the metric tensor 

from metrics (22) – (24) with the corresponding components from kin-

ematic metrics (38) and (41), we obtain:  
 

- components of the velocity vector 𝑣⃗(+𝑎1)  of the a1-subcont 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑎1)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,       𝑣𝜃

(+𝑎1)
≡ 0;     (46) 

                                                                                                                  

- components of the velocity vector 𝑣⃗(+𝑎2)  of the a2-subcont 

𝑣𝑟
(+𝑎2)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑎2)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,    𝑣𝜃

(+𝑎2)
≡ 0;     (47) 

 

- components of the velocity vector 𝑣⃗(+𝑏1)  of the b1-subcont 

𝑣𝑟
(+𝑏1)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,     𝑣𝜙

(+𝑏1)
≡   

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(+𝑏1)
≡ 0;     (48) 

 

- components of the velocity vector 𝑣⃗(+𝑏2)  of the b2-subcon 

𝑣𝑟
(+𝑏2)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,     𝑣𝜙

(+𝑏2)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,     𝑣𝜃

(+𝑏2)
≡ 0.     (49) 

 

 

 
Fig. 5.2: The cross-section of the field of 

the velocity component 𝑣𝜙
(+𝑏1)

of the               

b1-subcontact is rotated by 90o around 

the Z axis 
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According to (Batanov-Gaukhman, 2023d), for example, 

 

𝑣𝜙
(+𝑎,𝑏1)

= 𝑣𝜙
(+𝑎1)

+ i𝑣𝜙
(+𝑏1)

 ,       |𝑣𝜙
(+𝑎,𝑏1)

| = √𝑣𝜙
(+𝑎1)2

+ 𝑣𝜙
(+𝑏1)2

  

 

This means that the components of the velocity vectors 𝑣𝜙
(+𝑎1) and  𝑣𝜙

(+𝑏1) are mutually perpendicular. Therefore, 

the field of the velocity component of the b1-subcontact 𝑣𝜙
(+𝑏1) (see Figure 5.2) is perpendicular (i.e. rotated by 

90o around the Z axis) with respect to the field of the velocity component of the a1-subcontact 𝑣𝜙
(+𝑎1) (Figure 5.1). 

 

An analysis of all four vector fields 𝑣⃗(+𝑎1) (46), 𝑣⃗(+𝑎2) (47),  𝑣⃗(+𝑏1) (48),  𝑣⃗(+𝑏2) (49) based on [4] shows that in the 

outer shell of the moving “electron” in the vicinity of its core, four toroidal-helical vortices are induced, which on 
average are reduced to two counter vortices (see Figure 7a,b). These counter toroidal-helical vortices compensate 

each other’s manifestations, and therefore are not observed (see Figure 7c). In addition, in the outer shell of the 

moving “electron”, subcont currents remain flowing away from its core and flowing toward this core (see §2.2 in 
(Batanov-Gaukhman, 2024a)), which also on average compensate each other’s manifestations. 

 

 
                                            a)                                            b)                                           c) 

Fig. 7: In the outer shell (more precisely in the vicinity of the core) of an “electron” moving at a constant speed Vz  on 

average, two counter toroidal-helical subcont vortices and two counter (inflowing and outflowing) subcont laminar currents 
are induced, which compensate for each other’s manifestations 

 
 

The model of an electron in the form of a spiral toroid was considered in the following works (Cambier & Micheletti, 

2000; Chen et al., 2001; Consa, 2017; Consa, 2018; Williamson & Van der Mark, 1997; Kyriakos, 2004; Wayte, 
2010; Osmera, 2012; Bowen & Mulkern, 2015). 

 

4.2 Estimation of the velocity of the antisubcont in the outer shell of the moving “positron” 
 
Let’s compare the zero components of the metric tensor from metrics (27) – (30) with the corresponding com-
ponents from kinematic metrics (38) and (41), but with opposite signatures (– + + +) 

 

𝑑𝑠(−)2 = − (1 −
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 − 2𝑣𝑟𝑑𝑟𝑑𝑡 + 𝑑𝑟

2 + 𝑟2𝑑𝜃2+𝑟2𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                        (50)  

                                                                                                            

𝑑𝑠(−)2 =  − (1 − 
𝑟22

𝑐2
) 𝑐2𝑑𝑡2 +  𝑑𝑟2 + 𝑟2𝑑2 + 𝑑𝑧2 − 

2𝑟22

с
𝑑с𝑑𝑡.                                                         (51) 

 

As a result, we obtain: 
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- components of the velocity vector 𝑣⃗(−𝑎1) of the a1-antisubcont 

𝑣𝑟
(−𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑎1)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(−𝑎1)
≡ 0;                                                      (52) 

 

- components of the velocity vector 𝑣⃗(−𝑎2) of the a2-antisubcont 

𝑣𝑟
(−𝑎2)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,       𝑣𝜙

(−𝑎2)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,        𝑣𝜃

(−𝑎2)
≡ 0;                                                     (53) 

 

- components of the velocity vector 𝑣⃗(−𝑏1) of the b1-antisubcont 

𝑣𝑟
(−𝑏1)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑏1)
≡ − 

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,     𝑣𝜃

(−𝑏1)
≡ 0;                                                    (54) 

 

- components of the velocity vector 𝑣⃗(−𝑏2) of the b2-antisubcont 

𝑣𝑟
(−𝑏2)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑏2)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,         𝑣𝜃

(−𝑏2)
≡ 0.                                                    (55) 

 

A similar analysis of the four vector fields 𝑣⃗(−𝑎1) (52), 𝑣⃗(−𝑎2) (53),  𝑣⃗(−𝑏1) (54),  𝑣⃗(−𝑏2) (55) shows that in the outer 

shell of the moving "positron" in the vicinity of its core, four toroidal-helical vortices are induced, which on average 
are reduced to two counter vortices (see Figure 8a,b). These counter toroidal-helical vortices compensate each 

other's manifestations, and therefore are not observed (see Figure 8c). In addition, in the outer shell of the moving 
"positron" there are antisubcont currents flowing from its core and flowing to this core (see §2.2 in (Batanov-

Gaukhman, 2024a)), which also on average compensate each other's manifestations. 

 
 

 
                                       a)                                                   b)                                                 c) 
 

Fig. 8: In the outer shell (more precisely in the vicinity of the core) of a “positron” moving at a constant speed Vz, on 
average, two counter toroidal-helical antisubcont vortices and two counter (inflowing and outflowing) antisubcont laminar 

currents are induced, which compensate for each other’s manifestations 
 
 

"Electron" and "positron", moving with the same speed Vz, in the same direction, are identical to each other. Only 

in the moving "positron" (i.e. in the conditional stable concavity of the -12,-15-vacuum) all processes proceed in 

the opposite direction to the processes that proceed in the moving "electron" (i.e. in the conditional stable con-

vexity of the -12,-15-vacuum). 
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5 Acceleration of the subcont in the outer shell of a moving "electron" 

 

5.1 Contravariant components of the metric tensor 
 

We write out the expanded form of the Kerr metric (21), which describes the averaged behavior of the a1-sub-
cont in the outer shell of a moving “electron” 

 

𝑠1
(+𝑎1)2 = (1 −

𝑟6𝑟

𝑟2+𝑎2𝑐𝑜𝑠2 
) 𝑐2𝑑𝑡2 −

𝑟2+𝑎2𝑐𝑜𝑠2 

𝑟2+𝑎2−𝑟𝑟6
𝑑𝑟2 − (𝑟2 + 𝑎2𝑐𝑜𝑠2 )𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝑟2+𝑎2𝑐𝑜𝑠2 
) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

+ 
2𝑟6𝑟𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡.                                                                                                                   (56) 

 
The contravariant components of the metric tensor 𝑔𝑖𝑗 are equal to (Vladimirov, 2005) 

 

𝑔𝑖𝑗 =
Δ𝑖𝑗

𝑔
 ,                                                                                                                                         (57)      

 

where is the algebraic complement of the corresponding element of the matrix (𝑔𝑖𝑗), 

 

𝑔 = ‖𝑔𝑖𝑗‖ = −(𝑟
2 + 𝑎2 𝑐𝑜𝑠2 𝜃)2 𝑠𝑖𝑛2 𝜃  is the determinant of the matrix (𝑔𝑖𝑗).                                           (58) 

 
Calculations using Ex. (57) and the components of the metric tensor 𝑔𝑖𝑗 from the metric (56) resulted in the 

following components of the contravariant metric tensor (Vladimirov, 2005) 
                                                                       

𝑔𝑖𝑗(+𝑎1) =

(

 
 
 
 

(𝑟2+𝑎2)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)+𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 0
𝑟6𝑟𝑎

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 −
(𝑟2+𝑎2−𝑟𝑟6)

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
0 0

0 0 −
1

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
0

𝑟6𝑟𝑎

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 0 −
(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟𝑟6)

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃) 𝑠𝑖𝑛2 𝜃)

 
 
 
 

.        (59) 

 

 
5.2 Geometrized vectors of the a1-subcont electric field strength and magnetic induction 
 
The acceleration vector of the a1-subcont for the stationary case, which is the outer shell of the “electron” moving 
uniformly and rectilinearly, is determined by expressions of the form (95) in (Batanov-Gaukhman, 2023d) 

 

𝑎⃗(+𝑎1) =
𝑐2

√1−
𝑣𝑟
(+𝑎1)2

𝑐2

{−𝑔𝑟𝑎𝑑(𝑙𝑛 √𝑔00
(+𝑎1)

) + √𝑔00
(+𝑎1)

[
𝑣⃗⃗(+𝑎1)

𝑐
× 𝑟𝑜𝑡𝑔⃗(+𝑎1)]},                                                      (60) 

where  𝑔⃗(+𝑎1)(𝑔1
(+𝑎1)

, 𝑔2
(+𝑎1)

, 𝑔3
(+𝑎1)

)
 
is 3-dimensional vector with components 𝑔𝛼

(+𝑎1)
= −

𝑔0𝛼
(+𝑎1)

𝑔00
(+𝑎1) , 

               

  (61) 

or in component form (95) in (Batanov-Gaukhman, 2023d) 
 

𝑎𝛼
(+𝑎1)

=
𝑐2

√1−
𝑣𝑟
(+𝑎1)2

𝑐2

{−
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑥𝑎
+ √𝑔00

(+𝑎1)
(
𝜕𝑔𝛽

(+𝑎1)

𝜕𝑥𝑎
−
𝜕𝑔𝛼

(+𝑎1)

𝜕𝑥𝛽
)
𝑣𝛽
(+𝑎1)

𝑐
},                                                           (62) 

where 𝑣𝛽
(+𝑎1)

 are the components of the 3-dimensional velocity vector 𝑣⃗(+𝑎1) of the local section of the a1-subcont, 

for the considered case of a moving “electron” according to (45) 
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𝑣𝑟
(+𝑎1)

= с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑎1)
=

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(+𝑎1)
= 0.                                                         (63) 

 
According to Ex. (39) 

 

𝑣𝑟
(+𝑎1)2

=
𝑐2𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                         (64) 

 
In §5 in (Batanov-Gaukhman, 2023d) it was shown that Ex. (60) can be represented in the following form (see 

Ex. (114) in (Batanov-Gaukhman, 2023d)) 
 

a(+α1) = Eо
(+α1)

 + [v (+α1)  Во
(+α1)],                                                                                                                      (65) 

 

where aE
(+α1) = Eо

(+α1 is the vector of the laminar (rectilinear) component of the acceleration of the a1-subcontact 

(aE
(+α1)), its other name (in connection with the established tradition) is the geometrized vector of the a1-subcont 

electrical intensity (Eо
(+α1)) with components 

 

𝑎𝐸𝑟
(+𝑎1)

= 𝐸о𝑟
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑟∗
 ,                                                                                                         (66) 

𝑎𝐸𝜃
(+𝑎1)

= 𝐸о𝜃
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜃∗
 ,     

𝑎𝐸𝜙
(+𝑎1)

= 𝐸о𝜙
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜙∗
 ,         

 

where  𝛾 =
𝑐2

√1− 
𝑣𝑟
(+𝑎)2

𝑐2

 ,                                                                                                                        (67) 

 

  
𝜕

𝜕𝑟∗
= 𝑔11(+𝑎1)

𝜕

𝜕𝑟
,      

𝜕

𝜕𝜃∗
= 𝑔22(+𝑎1)

𝜕

𝜕𝜃
,        

𝜕

𝜕𝜙∗
= 𝑔33(+𝑎1)

𝜕

𝜕𝜙
 ,                                                                   (68) 

 

since the gradient of the scalar function 𝑔𝑟𝑎𝑑 𝐺(𝑥, 𝑦, 𝑧) =
𝜕𝐺

𝑑𝑥
𝑖 +

𝜕𝐺

𝑑𝑦
𝑗 +

𝜕𝐺

𝑑𝑧
𝑘  in curved coordinates of the Riemann-

ian space has the form (Korn & Korn, 1984) ∇𝐺 = 𝑒𝑖𝑔
𝑗𝑖 𝜕𝐺

𝑑х𝑗
 . 

 

In turn, the curl of vector F 

 

𝑟𝑜𝑡𝐹⃗ = (
𝜕𝐹𝑧

𝜕𝑦
−
𝜕𝐹𝑦

𝜕𝑧
) 𝑖 + (

𝜕𝐹𝑥

𝜕𝑧
−
𝜕𝐹𝑧

𝜕𝑥
) 𝑗 + (

𝜕𝐹𝑦

𝜕𝑥
−
𝜕𝐹𝑥

𝜕𝑦
) 𝑘  

 

in curved coordinates of Riemannian spaces has the form (Korn & Korn, 1984) 

 
1

√|𝑔|

𝐷𝐹𝑗

𝜕𝑥𝑖
𝑒𝑖𝑗𝑘 =

1

2√|𝑔|
(
𝜕𝐹𝑗

𝜕𝑥𝑖
−
𝜕𝐹𝑖

𝜕𝑥𝑗
) 𝑒𝑖𝑗𝑘 ,     

 
where 𝑒𝑖𝑗𝑘 is the Levi-Civita symbol. 
 

Therefore, the turbulent (rotational) acceleration of the a1-subcont [v (+α1)  Во
(+α1)] from Ex. (65) in the compo-

nent representation has the form: 
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𝑎𝐵𝑟
(+𝑎1)

= (𝑣𝜃
(+𝑎1)

𝐵0𝜙
(+𝑎1)

− 𝑣𝜙
(+𝑎1)

𝐵0𝜃
(+𝑎1)

) =
𝛾√𝑔00

(+𝑎1)

𝑐
{𝑣𝜃

(+𝑎1)
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
) − 𝑣𝜙

(+𝑎1)
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
)},         (69) 

 

𝑎𝐵𝜃
(+𝑎1) = (𝑣𝜙

(+𝑎1)
𝐵0𝑟
(+𝑎1) − 𝑣𝑟

(+𝑎1)
𝐵0𝜙
(+𝑎1)) =

𝛾√𝑔00
(+𝑎1)

𝑐
{𝑣𝜙

(+𝑎1)
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
) − 𝑣𝑟

(+𝑎1)
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
)},  

  

𝑎𝐵𝜙
(+𝑎1)

= (𝑣𝑟
(+𝑎1)

𝐵0𝜃
(+𝑎1)

− 𝑣𝜃
(+𝑎1)

𝐵0𝑟
(+𝑎1)

) =
𝛾√𝑔00

(+𝑎1)

𝑐
{𝑣𝑟

(+𝑎1)
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
) − 𝑣𝜃

(+𝑎1)
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
)},  

                                                                                                                  

where    
𝜕

𝜕𝑟+
=

1

2√|𝑔|

𝜕

𝜕𝑟
 ,          

𝜕

𝜕𝜃+
=

1

2√|𝑔|

𝜕

𝜕𝜃
 ,            

𝜕

𝜕𝜙+
=

1

2√|𝑔|

𝜕

𝜕𝜙
 .   

 

Here Во
(+α1)  is the geometrized vector of a1-subcontact magnetic induction with components 

 

𝐵о𝑟
(−𝑎)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
),   𝐵о𝜃

(−𝑎)
=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
),    𝐵о𝜙

(−𝑎)
=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
).   (70) 

 
The geometrized Ex. (65) is similar to the Lorentz force in classical electrodynamics. However, within the frame-

work of Geometrized vacuum physics (GVPh), the cause of electromagnetism is not some phenomenological elec-

tromagnetic field, but accelerated laminar and turbulent flows (currents), particularly the a1-subcontact, which are 

described by geometrized vectors Eо
(+α1) and Во

(+α1) with components 

 

                                               

(71) 
 

 
 

 

 
 

 
 

 
 
5.2 Acceleration of the a1-subcontact in the outer shell of a moving “electron” 
 
We write out the zero components of the metric tensor from the metric (56) 

 

𝑔00
(+𝑎1)

= 1 −
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃 
,        𝑔01

(+𝑎1)
= 𝑔02

(+𝑎1)
= 0,         𝑔03

(+𝑎1)
=

2𝑟6𝑟𝑎 𝑠𝑖𝑛
2 𝜃

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                              (72) 

. 

       

. 

In this case, according to Ex. (61)  𝑔𝛼
(+𝑎1)

= −
𝑔0𝛼
(+𝑎1)

𝑔00
(+𝑎1), we have 

 

𝑔𝑟
(+𝑎1)

= −
𝑔01
(+𝑎1)

𝑔00
(+𝑎1) = 0,       𝑔𝜃

(+𝑎1)
= −

𝑔02
(+𝑎1)

𝑔00
(+𝑎1) = 0,      𝑔𝜙

(+𝑎1)
= −

𝑔03
(+𝑎1)

𝑔00
(+𝑎1) = −

2𝑟6𝑟𝑎 𝑠𝑖𝑛
2 𝜃

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟
 ,                            (73) 

  
also for the case under consideration, according to Exs. (64) and (67) 

 

𝐸о𝑟
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑟∗
 ,  

 

𝐸о𝜃
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜃∗
 ,  

 

𝐸о𝜙
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜙∗
;  

𝐵о𝑟
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
) ,                                     

 

𝐵о𝜃
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
) ,   

 

 𝐵о𝜙
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
) .                                                         
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𝛾 =
𝑐2

√1− 
𝑣𝑟
(+𝑎1)2

𝑐2

=
𝑐2

√1− 
𝑟6𝑟

𝜌

=
𝑐2

√𝑔00
(+𝛼1)

 .                                                                                                        (74)    

 

Let’s write out the contravariant components (59) of the metric (56) 
 

𝑔11(+𝑎1) = −
(𝑟2+𝑎2−𝑟𝑟6)

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑔22(+𝑎1) = − 

1

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑔33(+𝑎1) = −

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟𝑟6)

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃) 𝑠𝑖𝑛2 𝜃 

 .              (75) 

 

We find the components of the vector of the geometrized subcont electrical intensity Eо
(+α1) (i.e. the components 

of the acceleration vector that determines the laminar component of the acceleration of the a1-subcontact) (66). 

Considering Exs. (72) – (75), we obtain 

 

𝑎𝐸𝑟
(+𝑎1)

= 𝐸о𝑟
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔11(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝑟
= −

с2𝑟6(𝑟
2+𝑎2−𝑟𝑟6)(𝑟

2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 ,                                      (76) 

 

𝑎𝐸𝜃
(+𝑎1)

= 𝐸о𝜃
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔22(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜃
=

с2𝑟𝑟6𝑎
2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 ,                                          (77) 

 

 𝑎𝐸𝜙
(+𝑎1)

= 𝐸о𝜙
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔33(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜙
= 0.                                                                              (78) 

 

где согласно (25′)  𝑎 =
𝑟6𝑉𝑧

2𝑐
  – параметр эллиптичности.          

 

Attention! The dimension of the component 𝐸о𝜃
(+𝑎1)

 (77) 1/sec2 differs from the dimension of acceleration m/sec2 

of the component 𝐸о𝑟
(+𝑎1)

(76). The dimension 1/sec2 corresponds to the dimension of acceleration of the angular 
velocity of rotation dΩ⁄dt. The angular velocity is related to the linear velocity by the relation v = rΩ, Differentiate 
this relation with respect to time, then dv⁄dt= rdΩ⁄dt. Therefore, we multiply Ex. (77) by r 
 

𝑎𝐸𝜃
(+𝑎1)

= 𝑟𝐸о𝜃
(+𝑎1)

= −
𝑟𝑐2

√𝑔
00
(+𝛼1)

𝑔22(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜃
=

с2𝑟2𝑟6𝑎
2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 .                                        (77′) 

 

This situation requires rechecking and additional understanding. 
 

At a = 0, the components of the vector of the geometrized electrical intensity of the a1-subcont 𝐸о𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

  (76) 

– (78) are reduced to the form of Exs. (55) in (Batanov-Gaukhman, 2024a) 

 

𝐸𝑣𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

= − 
𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)
,       Е𝜃

(+𝑎1) = 0,      Е𝜙
(+𝑎1) = 0,    with the dimension m/sec2.                       (79) 

 

This confirms the correctness of the results obtained. 
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The graphs of functions (76) and (77′) for the conventionally accepted values: 𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−13 and                        

Vz = 0,00001 are shown in Figure 9.      

                           

 
 

Fig. 9: Graphs of functions (76) and (77′) for the conventionally accepted values: 

𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−13,  and  Vz = 0,00001 

 
When substituting Exs. (58), (72) – (75) into (70) for the components of the vector a1-subcont geometrized magnetic induction 

Bо
(+α1) in the outer shell of a free valence “electron” moving rectilinearly at a constant velocity, we obtain: 

 

𝐵о𝑟
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙
) = −

2с𝑟𝑟6𝑎 𝑐𝑜𝑠 𝜃(𝑟
2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                        (80) 

 

𝐵о𝜃
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟
) =

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                           (81) 

 

𝐵о𝜙
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃
) = 0.                                                                                                (82) 

 

Attention! The dimension of the component 𝐵о𝑟
(+𝑎1)

(80) is 1/sec (corresponds to the dimension of the angular 

velocity of rotation), and the dimension of the component 𝐵о𝜃
(+𝑎1)

 (82) is 1/(secm). 

 

Substituting the components of the subcont induction vector Bо
(+α1) (80) – (82) and the velocity (63) into the 

expressions for the components of the turbulent (rotational) acceleration a1-subcont of the form (69) for the outer 

shell of a free "electron" moving with a constant velocity Vz , we obtain: 

 

𝑎𝐵𝑟
(+𝑎1)

= (−𝑣𝜙
(+𝑎1)

𝐵о𝜃
(+𝑎1)

) = −
𝑣𝜙
(+𝑎1)

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = −√

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,       (83) 

 

𝑎𝐵𝜃
(+𝑎1)

= (𝑣𝜙
(+𝑎1)

𝐵о𝑟
(+𝑎1)

) = −
𝑣𝜙
(+𝑎1)

2с𝑟6𝑎 𝑐𝑜𝑠 𝜃(𝑟
2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = −

2с2𝑟6
2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                         (84) 

 

𝑎𝐵𝜙
(+𝑎1)

= (𝑣𝑟
(+𝑎1)

𝐵о𝜃
(+𝑎1)

) =
𝑣𝑟
(+𝑎1)

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = √

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .              (85) 
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We substitute the components of the laminar acceleration vector (76), (77′), (78) and the components of the 

turbulent acceleration vector (83) – (85) into equations (69), as a result we obtain the following components of 

the a1-subcont acceleration vector a(+а1) in the outer shell of the “electron” moving with a constant velocity 𝑉𝑧 in 

the direction of the Z axis 

 

𝑎𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

+ 𝑎𝐵𝑟
(+𝑎1)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                (86) 

 

𝑎𝜃
(+𝑎1)

= 𝑎𝐸𝜃
(+𝑎1)

+ 𝑎𝐵𝜃
(+𝑎1)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 −
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (87) 

 

𝑎𝜙
(+𝑎1)

= 𝑎𝐸𝜙
(+𝑎1)

+ 𝑎𝐵𝜙
(+𝑎1)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                         (89) 

 

where according to (25′) 𝑎 =
𝑟6𝑉𝑧

2𝑐
  is the ellipticity parameter. 

 
The graph of functions (70), (71) and (72) with the conventionally accepted values: 𝑐 = 1 ,  𝑟6 = 10

−14,                                

𝑟 = 10−12  and Vz
 = 0,0000001 are shown in Figure 10. 

 
 

 
 

Fig. 10: Graphs of functions (70), (71) and (72) with the conventionally accepted:  

𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−12 and Vz

 = 0,0000001 

 

 
5.3 Acceleration of a2-subcont, b1-subcont and b2-subcont in the outer shell of a moving “electron” 
 

Performing actions similar to (56) – (89) with the metrics-solutions of the Einstein vacuum equation (22) – (24) 
 

𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,              (22′)    

𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,              (23′) 

𝑑𝑠4
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,              (24′)                                                                                                         

 

we obtain for the outer shell of the "electron" moving with a constant velocity 𝑉𝑧 in the direction of the Z axis: 

 

- components of the vector of a2-subcont acceleration a(+а2) 
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𝑎𝑟
(+𝑎2)

= 𝑎𝐸𝑟
(+𝑎2)

+ 𝑎𝐵𝑟
(+𝑎2)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2 𝜃)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                (90) 

 

𝑎𝜃
(+𝑎2)

= 𝑎𝐸𝜃
(+𝑎2)

+ 𝑎𝐵𝜃
(+𝑎2)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 +
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (91) 

  

𝑎𝜙
(+𝑎1)

= 𝑎𝐸𝜙
(+𝑎2)

+ 𝑎𝐵𝜙
(+𝑎2)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                       (92) 

 

- components of the vector of b1-subcont acceleration a(+b1) 

 

𝑎𝑟
(+𝑎2)

= 𝑎𝐸𝑟
(+𝑏1)

+ 𝑎𝐵𝑟
(+𝑏1)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                (93)        

 

𝑎𝜃
(+𝑏1)

= 𝑎𝐸𝜃
(+𝑏1)

+ 𝑎𝐵𝜃
(+𝑏1)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 −
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (94) 

  

𝑎𝜙
(+𝑏1)

= 𝑎𝐸𝜙
(+𝑏1)

+ 𝑎𝐵𝜙
(+𝑏1)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                         (95) 

 

- components of the vector of b2-subcont acceleration a(+b2) 

 

𝑎𝑟
(+𝑏2)

= 𝑎𝐸𝑟
(+𝑏2)

+ 𝑎𝐵𝑟
(+𝑏2)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2 𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,               (96)         

𝑎𝜃
(+𝑏2)

= 𝑎𝐸𝜃
(+𝑏2)

+ 𝑎𝐵𝜃
(+𝑏2)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 +
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                               (97) 

𝑎𝜙
(+𝑏2) = 𝑎𝐸𝜙

(+𝑏2) + 𝑎𝐵𝜙
(+𝑏2) = −√

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .                                                     (98) 

 

Attention! We urge mathematicians to double-check the obtained Exs. (86) – (98). 
 
5.4 Accelerated vacuum currents in the outer shell of a moving “electron” 
 
The general vector field of accelerated vacuum currents in the outer shell of a moving “electron”, according to 

geometrized vacuum electrodynamics (see (Batanov-Gaukhman, 2023d), especially §5 and 6 in (Batanov-Gau-
khman, 2023d)), is defined as a vector-quaternion 

 

aΣ
(+ab)  =  

1

4
 (a(+a1) + ia(+a2) + ja(+b1) + ka(+b2)),                                                                                                (99)                                      

 
where 

a(+a1) = Eо
(+a1)

 + [v(+a1)  Bо
(+a1)]   is vector field of accelerations of a1-subcont (86) – (89);                      (100)                                    

a(+a2) = Eо
(+a2)

 + [v(+a2)  Bо
(+a2)]   is vector field of accelerations of a2-subcont (90) – (92); 

a(+b1) = Eо
(+b1)

 + [v(+b1)  Bо
(+b1)]   is vector field of accelerations of b1-subcont (93) – (95); 

a(+b2) = Eо
(+b2)

 + [v(+b2)  Bо
(+b2)]   is vector field of accelerations of b2-subcont (96) – (98). 
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This type of notation for the general vector field of vacuum acceleration is because the current lines of acceler-

ated ak-subcont and bk-subcont currents are intertwined into current bundles. 

 

Ex. (100) can be represented in expanded form                                                                                                                                                                                      

                                                                                                                                                     (101) 

aΣ
(+ab)  = 

1

4
 (Eо

 (+a1) + iEо
(+a2) + jEо

(+b1) + k Eо
(+b2)) +  

1

4
 ([v(+a1)  Bо

(+a1)] + i[v(+a2)  Bо
(+a2)] + j[v(+b1)  Bо

(+b1)] + k [v(+b2)  Bо
(+b2)] ). 

   

or   aΣ
(+ab) = EΣ

 (+ab) + [vΣ
 (+ab)  BΣ

 (+ab)],                                                                                                      (102) 

 

where, in the case of uniform and rectilinear motion of the “electron”, 

                                                                                                      

EΣ
 (+ab) = 

1

4
 (Eо

 (+a1) + iEо
(+a2) + jEо

(+b1) + kEо
(+b2))                                                                                               (103)  

   

is the total geometrized field of the vector of the laminar (rectilinear) component of the subcont acceleration in 
the outer shell of the moving “electron”, or the averaged geometrized vector of the subcont electrical field strength; 

 

BΣ
 (+ab) = 

1

4
 (Bо

 (+a1) + iBо
(+a2) + jBо

(+b1) + kBо
(+b2))                                                                                             (104) 

 
is the total geometrized field of the vector of the turbulent (rotational) component of the subcont acceleration in 

the outer shell of the moving “electron”, or the averaged geometrized vector of the subcont magnetic induction; 

 

vΣ
 (+ab) = 

1

4
 (v (+a1) + iv(+a2) + jv(+b1) + kv(+b2))                                                                                                    (105) 

is the total field of the subcont velocity vector in the 

outer shell of the moving “electron”. 
 

Vector quaternion (99) describes an extremely 

complex interweaving of subcont currents in the 
outer shell of an "electron" moving rectilinearly and 

uniformly with a constant velocity Vz. Recall that 

this article considers the simplest version of inter-

weaving only ak-subcon currents with the same to-
pology, i.e. with one signature (+ – – –). However, 

it is necessary to remember that each ak-subcont 

current can be represented as an interweaving of 

seven subcurrents with different signatures (see 

(Batanov-Gaukhman, 2023b, 2023c, 2023d)). 
Therefore, at a deeper level of consideration, the 

picture of intra-vacuum processes in the outer shell 
of a free moving "electron" looks even more com-

plex, but at the same time more elegant and har-

monious. In Figure 11 an attempt is made to illus-

trate the interweaving of ak-subcont currents and 

sub-currents, with the sub-currents labeled with 
one of the seven rainbow colors (red, orange, yel-

low, green, blue, indigo, violet), which correspond 

to the signature of their -12,-15-vacuum sub-layer 

(see (123) in (Batanov-Gaukhman, 2023e)). 

 

 
 

Fig. 11: Illustration of the interweaving of -12,-15-vacuum sub-
currents, tied into knots and twisted into spirals. This illusion is 
inspired by the mathematical apparatus of geometrized vacuum 
physics, based on the Algebra of signatures (see (Batanov-Gau-

khman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a)) 
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We anticipate the objection that in the geometrized physics of vacuum there 

is no constructive concept of the substantiality of subcont currents, just as 

the substantiality of the electromagnetic field is unclear in classical electro-
dynamics. Within the framework of purely geometric constructions, the sub-

cont (i.e., a complexly woven pseudo-medium) forms only the illusion of con-
cepts of intra-vacuum processes. Nevertheless, the logical apparatus based 

on the geometrized vectors Eо
(+αk) and  Во

(+αk), associated respectively with 

the laminar and turbulent acceleration of one of the layers of the pseudo-

medium (in particular, the a1-subcont), is significantly more subtle and un-
derstandable, in comparison with the heuristic mathematical apparatus of 

classical electrodynamics, where the concepts of electric and magnetic fields 

are introduced directly on the basis of empirical phenomenology. Moreover, 
in our opinion, geometrized vacuum dynamics based on Signature Algebra 

meets the criteria of the Clifford-Einstein-Wheeler program, which is aimed 
at the complete geometrization of physics. 

 

5.5 Simplified schematic representation of the outer shell of a moving "electron" 
 

The vector-quaternion field of accelerations of four intertwined subcont layers in the outer shell of a moving 
"electron", described by Ex. (99), is extremely complex. However, upon averaging and at a significant distance 

from the core, the following simplified schematic representation of the vacuum region under study can be distin-
guished from this complex manifold. 

 
The averaged field of the geometrized vector of subcont magnetic induction BΣ

 (+ab) describes a complex rotational-

translational motion of the subcont layers around the direction of motion. This rotation is two counter toroidal-

helical vortices, see Figure 7 (which are conventionally shown in Figure 13 as a single vortex, for ease of percep-
tion), induced around the core of the moving "electron" (Figure 13b). 

 
                                a)                                        b)                                                     c) 
 
Fig. 13: a) The electric field of a charge at rest has spherical symmetry, and the electric field of a moving charge corre-

sponds to the shape of an ellipsoid of revolution. b) Simplified diagram of accelerated laminar and turbulent subcont currents 
in the outer shell of an "electron" moving rectilinearly at a constant speed in the vacuum of which it itself consists. c) Preces-

sion of the axis of rotation of the core of a moving "electron" in a sector limited by a solid angle Q, around the direction Z of 

its uniform and rectilinear motion 
 

 
Fig. 12: Drawing by Lebedev V.A. 
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The field of the averaged geometrized vector of the subcont electric intensity EΣ
 (+ab) in the outer shell of the moving 

"electron" is flattened (see Figure 13a,b). This field describes the accelerated laminar currents of various layers of 
the subcont, which flow in and out along spirals from/to the surface of the "electron" (see § 2.2.2 in (Batanov-

Gaukhman, 2024a). But in this case, the field of the subcont electric intensity is not spherical in nature, as in the 
case of a stationary "electron" (see Figures 9 and 11 in (Batanov-Gaukhman, 2024a)), but has the character of 
an ellipsoid of revolution, flattened along the Z axis, which coincides with the direction of motion of the "electron".  

 

These ideas of Geometrized vacuum physics (GVPh) about a moving “electron” largely coincide with the conclu-

sions of classical electrodynamics, according to which the electric field of a moving electron is flattened (as a result 
of relativistic effects), and a magnetic field is induced around it (Detlaff & Yavorsky, 2014). 

 
From the point of view of an outside observer, the core of a moving "electron" takes the form of an elongated 

ellipsoid (see Figure 13b,c), and its rotation axis chaotically precesses in a sector limited by the solid angle Q (see 

Figure 9c). The greater the speed of rectilinear motion of the "electron" core, the more its core flattens along the 
X and Y axes (perpendicular to the direction of motion), and the solid angle of the precession sector of its rotation 

axis decreases. Such shape and behavior of the "electron" core are caused by strong subcont currents in the neck 
of the toroidal-helical vortex circulating in its outer shell. At a rectilinear motion speed of the "electron" Vz close to 

the speed of light (Vz ≈ c), the rotation axis of the "electron" core practically stops precessing and coincides with 

the direction of its motion. 

 
Nature is fractal, i.e. it is repeated many times on different scales. For 

example, the movement of an "electron" in a vacuum, of which it itself 
consists, is similar to the movement of a collared flagellate (an aquatic 

unicellular organism), which, when moving, causes a toroidal current of 

water (see Figure 14) (Dogel, 1981). The flagellate is analogous to the 
compressed core of a moving "electron", and the toroidal movement of 

water caused by it is similar to a subcont toroidal-helical vortex in the 
outer shell of a moving "electron". 

 

The rotation of the outer shell of the moving "electron" leads to the emer-

gence of additional inertia of this entire –12,–16-vacuum formation. The 

faster the "particle" moves, the greater the speed of rotation of its outer 

shell and, accordingly, the greater the inertia in this rotation. Therefore, 
it is more difficult to accelerate a moving "particle" even more and it is 

more difficult to change the direction of its movement. 

 
Due to the conservation laws (which are expressed by Einstein's vacuum 

equations), if you accelerate the "electron" to a certain speed Vz, then it 

will continue to move in the –12,–16-vacuum with this speed in the initially 

given direction. 

 
6 Accelerations of the antisubcont in the outer shell of a moving “positron” 

 

If with the metrics-solutions of the Einstein vacuum equation (27) – (30) 
 

𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (27′)   

𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (28′)    

𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (29′) 

      
 

Fig. 14: a) Collared flagellates 
(aquatic unicellular organisms); b) To-

roidal water current caused by the 
movement of the flagellate (Dogel, 

1981). 
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𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (30′) 

perform actions similar to (56) – (89), then we obtain for the outer shell of the “positron” moving with a constant 

speed 𝑉𝑧 in the direction of the Z axis (Attention! Calculations should be double-checked): 

 

- components of the vector a1-antisubcont acceleration a(–a1) 

 

𝑎𝑟
(−𝑎1)

= 𝑎𝐸𝑟
(−𝑎1)

+ 𝑎𝐵𝑟
(−𝑎1)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,            (106)               

 

𝑎𝜃
(−𝑎1)

= 𝑎𝐸𝜃
(−𝑎1)

+ 𝑎𝐵𝜃
(−𝑎1)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                            (107) 

  

𝑎𝜙
(−𝑎1)

= 𝑎𝐸𝜙
(−𝑎1)

+ 𝑎𝐵𝜙
(−𝑎1)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                      (108) 

 

- components of the vector a2-antisubcont acceleration a(–a2) 

 

𝑎𝑟
(−𝑎2)

= 𝑎𝐸𝑟
(−𝑎2)

+ 𝑎𝐵𝑟
(−𝑎2)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,            (109)            

 

𝑎𝜃
(−𝑎2)

= 𝑎𝐸𝜃
(−𝑎2)

+ 𝑎𝐵𝜃
(−𝑎2)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

−
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                             (110) 

  

𝑎𝜙
(−𝑎2)

= 𝑎𝐸𝜙
(−𝑎2)

+ 𝑎𝐵𝜙
(−𝑎2)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                        (111) 

 

- components of the vector b1-antisubcont acceleration a(–b1) 
 

𝑎𝑟
(−𝑏1)

= 𝑎𝐸𝑟
(−𝑏1)

+ 𝑎𝐵𝑟
(−𝑏1)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,            (112)             

 

𝑎𝜃
(−𝑏1)

= 𝑎𝐸𝜃
(−𝑏1)

+ 𝑎𝐵𝜃
(−𝑏1)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                            (113) 

  

𝑎𝜙
(−𝑏1)

= 𝑎𝐸𝜙
(−𝑏1)

+ 𝑎𝐵𝜙
(−𝑏1)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                     (114) 

 

- components of the vector b2-antisubcont acceleration a(–b2) 

 

𝑎𝑟
(−𝑏2)

= 𝑎𝐸𝑟
(−𝑏2)

+ 𝑎𝐵𝑟
(−𝑏2)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,           (115)             

 

𝑎𝜃
(−𝑏2)

= 𝑎𝐸𝜃
(−𝑏2)

+ 𝑎𝐵𝜃
(−𝑏2)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

−
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                            (116) 
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𝑎𝜙
(−𝑏2) = 𝑎𝐸𝜙

(−𝑏2) + 𝑎𝐵𝜙
(−𝑏2) = √

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .                                                        (117) 

 
The general vector field of accelerated antisubcont currents in the outer shell of a “positron” moving rectilinearly 

and uniformly (i.e. with a constant velocity 𝑉𝑧) in the direction of the Z axis is determined by the vector-quaternion 

 

aΣ
 (– ab)  =  

1

4
 (a(– a1) + ia(– a2) + ja(– b1) + ka(– b2)),                                                                                                   (118)                                     

 

where   

a(–a1) = Eо
(–a1)

 + [v(–a1)  Bо
(–a1)]   is vector field of accelerations of a1-antisubcont (106) – (108);               (119)                                    

a(–a2) = Eо
(–a2)

 + [v(–a2)  Bо
(–a2)]   is vector field of accelerations of a2-antisubcont (109) – (111); 

a(–b1) = Eо
(–b1)

 + [v(–b1)  Bо
(–b1)]   is vector field of accelerations of b1-antisubcont (112) – (114); 

a(–b2) = Eо
(–b2)

 + [v(–b2)  Bо
(–b2)]   is vector field of accelerations of b2-antisubcont (115) – (117). 

 

The components of the ak- and bk-antisubcont acceleration vectors (106) – (117) in the outer shell of the moving 

“positron” are completely opposite to the corresponding components of the ak- and bk-subcont acceleration                      

(90) – (98) in the outer shell of the moving “electron”. That is, the difference between the corresponding compo-
nents (90) – (98) and (106) – (117) is zero. 

 

This means that all laminar (rectilinear) and turbulent (rotational) antisubcont flows in the outer shell of the 
moving “positron” are completely opposite to the corresponding laminar and turbulent subcont flows in the outer 

shell of the “electron” moving with the same speed and in the same direction (see Figure 15). In addition, the 
"positron" and "electron" are rotated (or phase-shifted) by 900 relatives to each other (see §5.2 in (Batanov-

Gaukhman, 2023c)). 

 

 
                              
                                     Moving "electron"                                    Moving "positron" 

 

Fig. 15: "Electron" and "positron" moving rectilinearly and uniformly with the same speed Vz 
in the same direction. In this case, all processes (i.e. accelerated laminar and turbulent flows) 

in their outer shells are mutually opposite 
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If the "electron" and "positron" move rectilinearly and uniformly with the same speed Vz, but in opposite directions, 

then all processes (i.e. accelerated laminar and turbulent flows) in their outer shells completely coincide (see 
Figure 16). In this case, they are practically indistinguishable. 

 

 
                                     Moving "electron"                                    Moving "positron" 

 
Fig. 16: "Electron" and "positron" moving rectilinearly and uniformly with the same speed Vz , but in opposite directions. 

In this case, all processes (i.e. accelerated laminar and turbulent flows) in their outer shells completely coincide 
 

 

7 Outer shell of the moving "proton" 
 

The motion of the "proton" and "antiproton", "neutron", hydrogen "atom" and other particles, the metric-dy-

namic models of which were considered in §4 in (Batanov-Gaukhman, 2023f), requires a separate study. 
 

In this article, as an example, we will only present a multilayer metric-dynamic model of the outer shell of one of 
the possible states of the p1-"proton" (92) in (Batanov-Gaukhman, 2023f) 

 

dr
+ (+  +  +  –)                                                            (120) 

ug
– (–  +  –  +) 

ub
– (–  –  +  +) 

р1
– (–  +  +  +) + 

 
which moves rectilinearly and uniformly with constant velocity 𝑉𝑧 in the vacuum of which it itself consists 

 

                                                            p1
–-“PROTON”                                                          (121) 

moving rectilinearly and uniformly. 
Outer shell with averaged signature (– + + +) 

 

Outer shell of the moving valence dr
+-“quark”, 

in the interval [r4, r6], signature (+ + + –) 

                   𝑑𝑠1
(−𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (122) 

                     𝑑𝑠2
(−𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠3
(−𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠4
(−𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;     
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Outer shell of the moving valence ug
–-“quark”, 

in the interval [r4, r6], signature (– + – +)  

                   𝑑𝑠5
(−𝑎3)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,      (123) 

                     𝑑𝑠6
(−𝑎4)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠7
(−𝑏3)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠8
(−𝑏4)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;      

Outer shell of the moving valence ub
–-“quark” 

in the interval [r4, r6], signature (– – + +)  

                   𝑑𝑠9
(−𝑎5)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,      (124) 

                     𝑑𝑠10
(−𝑎6)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠11
(−𝑏5)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠12
(−𝑏6)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;   

The substrate of p1
–-“proton” 

uniformly and rectilinearly moving, 
r  [0, ], signature (– + + +) 

                                             𝑑𝑠13
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                           (125) 

 
At 𝑉𝑧 = 0 (i.e., in the absence of motion), metrics (122) – (125) acquire the original form (93) – (95) in 6 (Batanov-

Gaukhman, 2023f). 
 

The methods for extracting information about the deformations, velocities, and accelerations of the subcont in the 
outer shell of a moving p1

–-“proton” are shown using the example of a moving “electron” (see §§2–5 of this article). 

However, the volume of calculations in this case increases more than threefold. 
 

8 Outer shell of a moving "quark" 

 
In this article, we have considered in detail only the metric-dynamic models of the outer shells of a moving 

"electron" and a moving "positron". However, the methods of extracting information from metrics (21) – (25) and 
(27) – (31) are suitable for describing the similar behavior of outer shells during the motion of all stable and 

unstable spherical vacuum formations considered in §4 in (Batanov-Gaukhman, 2023f): "quarks", "baryons" and 

"mesons". For example, the metric-dynamic model of the outer shell of a moving ur
–-"antiquark" (71) in (Batanov-

Gaukhman, 2023f) with the signature (– + + –) is determined by the metrics 

 
The outer shell of a moving valence ur

–-"antiquark" 
in the interval [r4, r6], signature (– + + –) 

                    𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,   (126) 

                      𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑎)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                      𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                      𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ(𝑏)
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;  

The substrate of  ur
–-"proton" 

uniformly and rectilinearly moving, 
r  [0, ], signature (– + + –) 

                                             𝑑𝑠5
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                          (127) 
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Similarly, metric-dynamic models of the outer shells of all moving colored "quarks" given in Table 1 in (Batanov-

Gaukhman, 2023f) can be specified. In this case, metric-dynamic models of the outer shells of all these 16 "quarks" 

are determined by sets of metrics (126) – (127) with the corresponding signature from Table 1 in (Batanov-
Gaukhman, 2023f). In turn, from these 16 "quarks" metric-dynamic models of all elements of the Standard Model 

of elementary "particles" moving rectilinearly and uniformly can be composed. 
 
 

9 Condition of annihilation of "particles" and "antiparticles" 

 
In the previous paragraphs it was shown that the outer shells of all moving stable spherical vacuum formations, 

such as: "electrons" and "positrons", "protons" and "antiprotons", "neutrons" and "antineutrons", "mesons" and 
"antimesons", etc., considered in §4 in (Batanov-Gaukhman, 2023f), are described similarly. For example, despite 

the fact that the "proton" consists of three valence "quarks", during its translational motion around its core, on 

average, laminar and turbulent antisubcont currents are induced, similar to the antisubcont accelerated currents 
arising during the motion of the "positron". Only the metric-dynamic model of a moving “proton” is significantly 

more complex, since it does not consist of 4 Kerr metrics (27) – (30) with a signature (– + + +), but of 3×4 = 12 
similar metrics, for example, (122) – (124) with signatures from the ranking (120). 

 

In the framework of the geometrized vacuum physics (GVPh, see (Batanov-Gaukhman, 2023a, 2023b, 2023c, 
2023d, 2023e, 2023f, 2024a)) developed here, all bodies consist of "particles" and "antiparticles" that do not 

annihilate, since they are very complexly mixed, intertwined with each other and are constantly in thermal chaotic 
motion. In other words, "particles" and "antiparticles" in bodies are so complexly tied into topological (i.e. signature) 

nodes and move so complexly with the induction of toroidal-helical vacuum currents that it is practically impossible 
to untangle them. But mobile free "particles" and "antiparticles" (in particular, moving "electrons" and "positrons") 

cannot annihilate, since for mutual destruction they must completely coincide with each other. For example, if you 

tear a piece of fabric out of a tablecloth, it is almost impossible to completely restore the integrity of the tablecloth, 
since the torn piece of fabric will never perfectly fill the hole. 

 
Presumably, the annihilation of slow "particles" and "antiparticles" (in partic-

ular, the "electron" and "positron") is possible only when they are practically 

at rest. Only after the "particle" and "antiparticle" have practically come to a 
complete stop can the spiral-rotational approach (i.e. the dance of death, see 

Figure 17) begin. During the annihilation of a "particle" and "antiparticle", 
their cores circle around each other for so long until they emit (i.e. throw off 

in the form of radiation) all that is superfluous and coincide with each other 
with absolute precision (i.e. the convexity of the vacuum must fill its concavity 

with the highest precision). Thus, the annihilation of "particles" and "antipar-

ticles" inside bodies, where they are tightly packed, complexly mixed and con-
stantly participate in thermal (chaotic) motion, is practically impossible. 

 
Thus, it should be expected that the process of annihilation of "particles" and "antiparticles" (i.e. their dance of 

death) can begin only when they are practically at rest relative to each other and the surrounding vacuum, of 

which they themselves are stable deformations (i.e. when they shed the excess rotational inertia associated with 
their motion). In other words, atomic bodies can self-annihilate (with the release of enormous energy) at a tem-

perature close to absolute zero. It is estimated that the process of self-annihilation of an atomic body can begin 
at its temperature of 0.08 – 0.3 K. 

 

 
10 Geometrized model of motion of bodies by inertia 

 
When an atomic body moves as a whole, the "particles" and "antiparticles" that fill it move in one direction. In 

this case, toroidal-helical vortices (geometrized magnetic fields) are induced around their cores. But these vortices 

   

Fig. 17: The dance of death 
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are mutually opposite in "particles" and "antiparticles" (see Figures 15 and 18), so these vacuum rotations, on 

average, compensate each other's manifestations. As a result, a general geometrized magnetic field is not ob-

served around the moving body. In other words, mutually opposite magnetic fields (i.e., rotational accelerations 
of the subcont and antisubcont around the direction of motion of the moving cores of "particles" and "antiparticles") 

are constantly induced when the body moves in a vacuum, but on average, they almost completely compensate 
each other's manifestations. 

 

 
 

Fig. 18: "Particles" and "antiparticles" (in particular "electrons" and "positrons") moving 
along with the entire body rectilinearly and uniformly with the same speed Vz 

 
 

Thus, in order for the body to start moving, part of the force applied to it is spent on inducing toroidal-helical 
vacuum vortices (geometrized magnetic fields) in the direction of its motion. However, because "particles" and 

"antiparticles" induce mutually opposite vacuum vortices, the general magnetic field around the moving body is 
present, but does not manifest itself, since the effect of counter vortices and anti-vortices is mutually compensated. 

 

The expenditure of external forces on inducing mutually opposite toroidal-helical vortices (geometrized magnetic 
fields) is the cause of the inertia of bodies, i.e. resistance to the onset of motion. However, if the body is already 

set in rectilinear and uniform motion, then the mutually opposite toroidal-helical vortices induced in this case will 
support the motion of the body in the same direction and at the same speed, since these two counter rotations 

are preserved, as evidenced by the stationarity of the Kerr metrics (21) – (24) and (27) – (30). Within the frame-
work of the GVPh, this is the reason for the infinite motion of bodies in a vacuum by inertia. 

 

On the contrary, forced braking of a moving body is accompanied by resistance from the inertia of mutually 
opposite toroidal-helical vacuum vortices. The preservation of mutually opposite rotation of the vacuum around a 

moving body does not allow this body to be braked instantly. For the same reason, it is not easy to change the 
direction of its motion. 

 

The explanation of the motion of bodies by inertia proposed by GFV due to the induction of mutually opposite 
toroidal-helical vacuum vortices (counter geometrized magnetic fields) allows one to completely get rid of the 

concept of the inertial mass of a body. In other words, the proposed mechanism for the emergence of inertia due 
to the induction of mutually opposite rotational vacuum flows around a moving body is, in essence, a geometri-

zation of the concept of mass. In this case, the more interconnected "particles" and "antiparticles" participate in 
the collective (joint) motion (i.e. the more "particles" and "antiparticles" in the body, see Figure 18), the more 

counter toroidal-helical vortices are induced around their nuclei and the greater the general inertia of such a body. 

This is equivalent to an increase in the mass of the body with an increase in the number of atoms and molecules. 
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11 Inertioid (practical application of inertial metrodynamics) 

 

The metric-dynamic model of the interaction of a moving body with the sur-
rounding vacuum, developed on the basis of solutions of the Einstein vac-

uum equation, can be used for the theoretical justification of the occurrence 
of thrust in mechanisms such as Tolchin's inecioids (see Figure 19). 

 
From the point of view of Geometrized vacuum physics, inertioids should be 

considered not as closed, but as open mechanical systems interacting with 

a vacuum (Shipov, 1998). That is, it is possible to push off from a vacuum 
during the accelerated motion of the inertioid flywheels. 

 
The use of inertioids on spacecraft can contribute to the development of a method for correcting the orbit of 

satellites in a vacuum that does not require a large consumption of fuel from jet engines to correct their orbit. 

This could lead to significant savings and extend the service life of spacecraft. 
 
 

12 Counter "electron" - "positron" electric current 

 
In modern physics, it is generally accepted that electric current is a directed movement of charged particles. In 

particular, it is assumed that electrons are the carriers of electric charge in metals. 
 

In Geometrized vacuum physics (GVPh) there is no asymmetry between "particles" and "antiparticles", so we are 

forced to state that electric current is a counter-directed movement of "particles" and "antiparticles". 
 

It should be noted that the counter current of particles and antiparticles is not new. For example, it is believed 
that electron-hole conductivity occurs in semiconductors. It is simply due to the established scientific paradigm 

that "positrons" were called "holes". 

 
Within the framework of the GVPh, during the counter motion of, for example, “electrons” and “positrons” in a 

metal wire (see Figure 20): 
- firstly, “particles” and “antiparticles” cannot annihilate, for the reasons indicated in §9; 

- secondly, toroidal-helical vortices (i.e. geometrized magnetic fields) induced around the nuclei of “particles” and 
“antiparticles” moving towards each other rotate in the same direction (see Figures 16 and 20a). 

 

                    
                                                        a)                                                                     b) 

Fig. 20: "Particles" and "antiparticles" (in particular, "electrons" and "positrons") moving in a metal wire 
rectilinearly and uniformly with the same speed Vz towards each other, i.e. in opposite directions. 

At the same time, their counter toroidal-helical vortices rotate in one direction 

 

 
 

Fig. 19: Implementation of one of 
several variants of constructing 

Tolchin inertioids 
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As a result, a joint geometrized magnetic field is induced around the conductor with a counter "electron" - "posi-

tron" current (see Figure 20b), i.e., an averaged rotation of the vacuum. 

 
CONCLUSION 

 
This part of the Geometrized vacuum physics (GVPh) proposes metric-dynamic models of the outer shells of 

moving "particles" (in particular, moving "electron" and moving "positron"), provided that they move rectilinearly 

and uniformly (i.e. with a constant velocity Vz ) in the direction of the Z axis relative to the vacuum, of which they 

themselves are stable curvatures. 
 

These metric-dynamic models of the outer shells consist of sets of Kerr metrics with different signatures: (21) – 

(25) for a moving "electron" with the signature (+ – – –); (27) – (31) for a moving "positron" with the signature 
(– + + +); (122) – (125) for a moving "proton" with signatures (120); (126) – (127) for a moving ur-“antiquark” 

with the signature (– + + –). 
 

Metrics-solutions with common (or averaged) signatures (+ – – –) and (– + + +) are exact solutions of the Einstein 

vacuum equation (42) in (Batanov-Gaukhman, 2023e) (𝑅𝑖𝑘 = 0), which is essentially a mathematical expression 

of conservation laws (see (Batanov-Gaukhman, 2023e; Batanov-Gaukhman, 2023f)). This means that “particles” 

moving relative to a vacuum at rest rectilinearly and uniformly (i.e. with a constant velocity) remain in this un-
changed state until they are subjected to a braking effect. 

 
As a result of the analysis of the sets of metrics-solutions (21) – (25) for the moving "electron" and (27) – (31) for 

the moving "positron" using the methods of the GVPh and the Algebra of signature described in (Batanov-Gaukhman, 

2023a, 2023b, 2023c, 2023d, 2023e, 2023f, 2024a), the following main results were obtained. With rectilinear and 
uniform motion of the valence "electron" and valence "positron" relative to the vacuum of which they consist of: 

 
1) the averaged outer shell of the valence "electron" takes the form of an ellipsoid of revolution, flattened along 

the Z axis, which coincides with the direction of its motion (see Figure 4); 
2) the averaged lines of force of the geometrized electric field (i.e. the field of laminar accelerations of the subcont) 

in the outer shell of the valence "electron" are compressed (see Figure 13a,b); 

3) the core of the moving valence "electron" (or "positron") is compressed along the Y and X axes, perpendicular 
to the direction of motion, and acquires the shape of an elongated spheroid (olive), the axis of rotation of which 

chaotically precesses in a limited sector (see Figure 13c); 
4) two counter toroidal-helical vortices of the subcont are induced around the moving core of the "electron" (or 

"positron") (i.e., on average, a completely compensated geometrized magnetic field, or an averaged field of tur-

bulent accelerations of the subcont) (see Figure 7, or Figure 8); 
5) similar metamorphoses occur with the moving "positron" as with the moving "electron", but all processes in the outer 

shell of the "positron" proceed in the opposite direction to the processes occurring in the outer shell of the "electron". 
 

In this article we have considered in detail only the metric-dynamic models of the outer shells of the moving 
"electron" and the moving "positron". However, the methods of extracting information from the metrics (21) – 

(25) and (27) – (31) are suitable for describing the similar behavior of the outer shells during the motion of all 

stable and unstable spherical vacuum formations considered in §4 in (Batanov-Gaukhman, 2023f): "quarks", "bar-
yons", "mesons".  

 
When choosing the model of a moving "electron" relative to the vacuum, of which it is a stable curvature, we 

proceeded from how stable disturbances move in atomistic media (see, for example, see Figures 1 and 10). This 

is based on the belief that similarity is one of the principles of formation of natural objects. This belief is supported 
by the presence of Kerr metrics – as exact solutions of Einstein's vacuum equations. This heuristic approach does 

not seem convincing, but the metric-dynamic models of moving “particles” and “antiparticles” proposed here allow 
us to describe geometrically the following fundamental phenomena: 
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1) Electromagnetic fields around moving “particles” and “antiparticles” within the framework of the GVPh can be 

represented as completely geometrized vector fields of laminar (linear) and turbulent (rotational) accelerations of 
various layers of vacuum. 

 
2) It is possible to explain the inert properties of bodies consisting of "particles" and "antiparticles". When such a 

body moves relative to a stationary vacuum, then mutually opposite toroidal-helical vacuum vortices (i.e. geome-
trized magnetic fields) are induced around the "particles" and "antiparticles" (see Figures 15 and 18). In order for 

these vortices to arise, it is necessary to expend effort, which explains the resistance of the body to the transition 

from a state of rest relative to the vacuum to a state of its rectilinear and uniform motion. When counter toroidal-
helical vacuum vortices are induced, they support the motion of "particles" and "antiparticles" and the entire 

atomic body as a whole with a constant speed, since the integral rotational acceleration of the vacuum is preserved. 
To stop a body moving relative to a vacuum, it is necessary to expend effort to stop the induced counter toroidal-

helical vortices. At the same time, the geometrized magnetic field of a moving body does not manifest itself, since 

the toroidal-helical vortices of the "particles" are compensated by the opposite toroidal-helical vortices of the 

"antiparticles". The greater the speed of the joint translational motion Vz  of the "particles" and "antiparticles" (in 

particular, "electrons" and "positrons") of the body, the more intensively the toroidal-helical vortices of the vacuum 
twist around the direction of motion. In addition, for example, the toroidal-helical vortices of the antisubcont, 

induced around the moving nucleus of the "proton" are significantly more complex and more difficult to induce, 
since it consists not of one, but of those "quarks" (see §7). Taken together, all these properties of a moving body 

as a set of "particles" and "antiparticles" (in particular, "electrons" - "positrons", "protons" - "antiprotons", "neu-
trons" - "antineutrons", etc.) completely explain its inert properties in terms of counter-accelerated rotational 

accelerations of various vacuum layers (subcont and antisubcont) induced around their nuclei. In other words, it 

is possible to completely hermetically seal the explanation of the inert properties of atomic bodies without invoking 
the vague concept of "inert mass". 

 
3) In the framework of the GVPh, electric current is a directed counter-movement of "particles" and "antiparticles" 

(in particular, "electrons" and "positrons"). In this case, when stable mutually opposite vacuum formations move 

towards each other, the directions of their toroidal-helical subcont-antisubcont currents coincide (see Figure 16 
and 20). As a result, the general (average) movement of, for example, a metal conductor is absent, and a general 

geometrized magnetic field is induced around the conductor (i.e., a looped field of rotational accelerations of the 
vacuum, see Figure 20b). Thus, such a phenomenon as electric current can be explained from the standpoint of 

geometrized (inert) metro-dynamics. 
 

4) In the GVPh developed here, we are forced to assume that "particles" and "antiparticles" in atomic bodies 

cannot annihilate because they are constantly in thermal motion, while counter toroidal-helical vortices are con-
stantly induced around them, which support their coexistence, since the inertia of rotation of the vacuum around 

the moving nuclei cannot be eliminated. Therefore, the article suggests that the annihilation of atomic bodies 
consisting of "particles" and "antiparticles" is possible only at temperatures close to absolute zero (i.e., approxi-

mately at 0.08 – 0.3 K). Thus, if atomic bodies are completely frozen, then upon their disappearance, a colossal 

amount of accelerated motion (wave disturbances) of the vacuum will be released. 
 

This article is devoted to the geometrization of processes and phenomena at the picoscopic level of existence (i.e. 
at the level of elementary "particles"). However, as has been repeatedly noted in (Batanov-Gaukhman, 2023a, 

2023b, 2023c, 2023d, 2023e, 2023f, 2024a), the metrodynamics of the GVPh is universal for all scales of consid-

eration. If in all the equations of this article instead of r6 ~ 10–13 cm (the radius of the core of an elementary 

"particle", in particular the nucleus of an "electron") we substitute any other radius from the hierarchy (44a) in 6 

(Batanov-Gaukhman, 2023f). 
 

r1 ~ 1039  cm  is radius commensurate with the radius of the mega-Universe;                                                             

r2 ~ 1029  cm  is radius commensurate with the radius of the observable Universe; 
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r3 ~ 1019  cm  is radius commensurate with the radius of the galactic core; 

r4 ~ 108    cm  is radius commensurate with the radius of the core of a planet or star; 

r5 ~ 10–3  cm  is radius commensurate with the radius of a biological cell; 

r6 ~ 10–13 cm  is radius commensurate with the radius of an elementary particle core; 

r7 ~ 10–24 cm  is radius commensurate with the radius of a proto-quark core; 

r8 ~ 10–34 cm  is radius commensurate with the radius of a plankton core; 

r9 ~ 10–45 cm  is radius commensurate with the radius of the proto-plankton core; 

r10 ~10–55 cm  is radius commensurate with the size of the instanton core, 

 

then we get a geometrized description of the behavior of the vacuum in the outer shells of the "proto-quarks" (r7 

~ 10–24 cm), or "planets" (r7 ~ 10–24 см cm), or "galaxies" (r3 ~ 1019 cm), etc. 

 

All formulas presented in this article should be rechecked by mathematicians who have the skills to automate 

calculations using specialized software. I offer cooperation to specialists who can create an interactive model of 
moving "particles" based on the mathematical apparatus proposed here. 

 
In the author's opinion, despite possible shortcomings, this article has made another step towards completing the 

Clifford-Einstein-Wheeler program for the complete geometrization of physics. 
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