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ABSTRACT
This article is the seventh part of the scientific project under the general title "Geometrized Vacuum Physics” Based on the
Algebra of Signature" (Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f). In this article, the metric-dynamic
model of two simplest mutually opposite stable spherical vacuum formations is considered - "electron" and "positron". These
stable vacuum formations are an integral part of the hierarchical cosmological model proposed in the previous article (Batanov-
Gaukhman, 2023f). The methods of geometrized vacuum physics and the mathematical apparatus of the Algebra of Signature
used in this article to study the metric-dynamic model of "electron" and "positron" are suitable for studying all other more

complex stable vacuum formations of the same scale: "quarks", "nucleons", "mesons", "atoms" and "molecules", etc., as well
as all stable vacuum formations of any scale, for example, "planets”, "stars" and "galaxies". This article examines issues related
to deformations and accelerated flows of various vacuum layers inside the "electron" and "positron". Paths for the development
of geometrized vacuum electrostatics are outlined. Some aspects of the "electron"-"photon", "electron"-"positron" and "elec-
tron"-"electron" interactions are considered. The "electron" and "positron" are infinitely complex vacuum formations, but the
algorithms and mathematical techniques of the Algebra of signature proposed in the article can permanently push back dark-

ness into the abyss of the unknown, gradually transforming transcendence into immanence.

RESUMEN
Este articulo es la séptima parte del proyecto cientifico titulado "Fisica del vacio geometrizada” basada en el algebra de signa-
turas" (Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f). En este articulo se considera el modelo métrico-
dinamico de dos formaciones de vacio esféricas estables mutuamente opuestas mas simples: "electron" y "positron". Estas
formaciones de vacio estables son una parte integral del modelo cosmoldgico jerarquico propuesto en el articulo anterior
(Batanov-Gaukhman, 2023f). Los métodos de fisica del vacio geometrizada y el aparato matematico del algebra de signaturas
utilizados en este articulo para estudiar el modelo métrico-dinamico del "electron" y el "positrdn" son adecuados para estudiar

non n ong

todas las demas formaciones de vacio estables mas complejas de la misma escala: "quarks", "nucleones", "mesones", "atomos"
y "moléculas", etc., asi como todas las formaciones de vacio estables de cualquier escala, por ejemplo, "planetas", "estrellas"
y "galaxias". En este articulo se examinan cuestiones relacionadas con las deformaciones y los flujos acelerados de varias
capas de vacio en el interior del "electron" y del "positron". Se describen los caminos para el desarrollo de la electrostatica de
vacio geometrizada. Se consideran algunos aspectos de las interacciones "electrén"-"fotén", "electrén"-"positrén" y "electrén"-
"electron”. El "electron” y el "positron” son formaciones de vacio infinitamente complejas, pero los algoritmos y las técnicas
matematicas del Algebra de signaturas propuestas en el articulo pueden permitir empujar permanentemente la oscuridad hacia

el abismo de lo desconocido, transformando gradualmente la trascendencia en inmanencia.

Keywords: electron-positron, geometrized physics, elementary particle models, mass gap
Palabras clave: electron-positron, fisica geometrizada, modelos de particulas elementales, brecha de masa

23


mailto:alsignat@yandex.ru
https://doi.org/10.65093/aci.v15.n1.2024.18

Avances en Ciencias e Ingenieria - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman

BACKGROUND AND INTRODUCTION

This paper is the seventh in a series of articles under the general title "Geometrized Vacuum Physics Based on the
Algebra of Signature". The previous six articles are listed in the bibliography (Batanov-Gaukhman, 2023a; 2023b;
2023c; 2023d; 2023e; 2023f).

The paper (Batanov-Gaukhman, 2023f) presented a hierarchical cosmological model, within the framework of
which the Universe is filled with an uncountable number of spherical vacuum formations (corpuscles) of various
scales, which are nested inside each other like Russian dolls (see Figure 10 in (Batanov-Gaukhman, 2023f)).
Within the framework of the hierarchical cosmological model (Batanov-Gaukhman, 2023f), all spherical vacuum
formations (corpuscles) of the universal, galactic, stellar-planetary, microscopic (i.e. cellular-bacterial), picoscopic
(i.e. atomic-molecular), etc. scales are arranged practically identically. Therefore, in the article (Batanov-Gau-
khman, 2023f), only the level of elementary particles is considered in detail. In particular, metric-dynamic models
of sixteen types of colored "quarks" (see Table 1 and the set of metrics (71) in (Batanov-Gaukhman, 2023f)) and
colored photons were obtained, on the basis of which completely geometrized representations of practically all

elements of the Standard Model of elementary particles were constructed: "leptons”, "mesons", "baryons", "bos-
ons" (see §4 in (Batanov-Gaukhman, 2023f)), as well as "atoms" and "molecules".

Let’s recall that we have agreed to put the names of metric-dynamic models of "particles” of all scales in quotation
marks, because, firstly, these are not exactly particles, and, secondly, these geometrized models only partially
correspond to modern ideas about these elements of matter.

In the article (Batanov-Gaukhman, 2023f), only sets of metrics-solutions of Einstein's vacuum equations are given,
which make up the metric-dynamic models of spherical vacuum formations ("corpuscles"), however, how to ex-
tract information about the structure of these "corpuscles" from these sets of metrics based on the methods of
geometrized vacuum physics and the Algebra of Signature was not presented.

In this article, as an example, we will study in detail the structure and interaction of only the "electron" and
"positron". The structure and interaction of all other spherical vacuum formations (“corpuscles”) of any scale
(“quarks”, “planets”, “stars”, “galaxies”, etc.) are described similarly, and are partly planned to be considered in
subsequent articles of this project.

Let's recall that the metric-dynamic models of a free “electron” and a free “positron” are determined respectively
by sets of metrics (50) and (60) taking into account §4.12 in (Batanov-Gaukhman, 2023f)

"ELECTRON" (1)
On average, spherical stable "convex free, valence
" multilayer spherical
curvature of A.12-15-vacuum with signature (+ — —-), consisting of?:

I The outer shell of free valence "electron"
in the interval [, 5] (see Figure 1
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HI

H The core of free valence "electron"
in the interval [, r,] (Figure 1)
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76
/  The substrate of the “electron”
in the interval [0, ]
dsé+"_)2 = c2dt? — dr? —r?(d6? + sin? 8 d¢?).
raqiya

outer shell

Fig. 1: Illustration of a fully geometrized model of a stable spherical vacuum formation
(in particular, a free “electron”) with four clearly defined regions:
The core of the "electron" is the central closed spherical region of A.1-15-vacuum;

The outer shell of the "electron" is the region of A.12-1s-vacuum surrounding the core of the "electron”;
The raqiya of the "electron" is a layer spherical abyss-crack separating the core of the "electron" from its outer shell.
The inner nucleolus is a small closed spherical region of 1.1,-15-vacuum inside the core of the "electron";

(6)

)

(8)

9)

(10)

The substrate of the "electron” is the original undeformed region of vacuum in which the "electron" is located. This is a kind of
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"POSITRON" (11)
free, valence
On average, spherical stable " concave " multilayer spherical
curvature of 1.1,,-15-vacuum with signature (+ — —-), consisting of:

V  The outer shell of free valence "positron”
in the interval [z, 5] (see Figure 1)
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H’ The core of free valence " positron "
in the interval [rs, ;] (Figure 1)
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e
f The substrate of the “positron”
in the interval [0, «]
i ds$TP2 = — c2dt? + dr? + r2(dO? + sin? 0 dg?). (20)

where in metrics (2) — (9) and (12) — (19), according to hierarchy (44a) in (Batanov-Gaukhman, 2023f), pre-
sumably:

r»~ 10%° cm is the approximate radius of the observable Universe;

re ~ 10713 cm is the approximate radius of the radius of the core of the “electron”;

r7~ 1072* cm is the approximate radius of the core of the “proto-quark”.

The radii ., 76, r7, taken from the hierarchy (44a) in (Batanov-Gaukhman, 2023f) are approximate and can be
refined as further research progresses. These radii do not have a significant effect on the structure of the valence
"electron” and valence "positron" if 72 » s » 7.

As already noted in (Batanov-Gaukhman, 2023f), the sets of metrics (1) and (11) differ only in signature. That is,
the "electron" and "positron" are completely identical, but antipodal (mutually opposite) copies of each other. If
the "electron" is conventionally called a "convex" stable spherical A-12-1s-vacuum formation (Figure 1), then the
"positron" is exactly the same conventionally "concave" stable spherical A-12,-1s-vacuum formation (negative of
Figure 1). Recall that the concept of Am~vacuum was introduced in §2.1 in (Batanov-Gaukhman, 2023a). Such a
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mutually opposite pair of A-12-15-vacuum formations fully corresponds to the condition of vacuum balance (see the
Introduction in (Batanov-Gaukhman, 2023a), since they compensate each other's manifestations (i.e. if we add
or average all the metrics (2) — (10) and (12) — (20), the result will be zero).

MATERIALS AND METHOD
1 Infinite "electron" and "positron”

The sets of metric solutions (1) and (11) are the most simplified metric-dynamic models of the "electron" and
"positron”. They are called valence (from the Latin valentis - strong, durable; influential, by analogy with valence
quarks in nuclear physics), since the sets of metric solutions (1) and (11) determine the average stable structure
of the "electron" and "positron".

Firstly, the vacuum constantly and everywhere chaotically oscillates and curves, so its structure is revealed only
by averaging these fluctuations. Second, according to the fundamentals of the Algebra of signature (see §2.9 in
(Batanov-Gaukhman, 2023c) and §2.7 in (Batanov-Gaukhman, 2023e)), any pair of metrics with mutually opposite
signatures can be represented as a sum (or average) of 7 + 7 = 14 metrics with other signatures.

For example, a mutually opposite pair of metrics ds©** 92 and ds" ~~"? with opposite signatures (- + + +) and

(+ — —-) can be expressed by summing (or averaging) 7 + 7 = 14 metrics with signatures
(21)
+++4 + (- -2 =0
--+H + +++-) =
+-=-4 + ++-) =
-+ + ++-+ =
++-2) + -++ =0
+-9) + +-++H =
+-—+) + +-—+) =
(+77*)+ + (7+++)+ =V.

Recall that each signature corresponds to a topology of metric extension (see §4 in (Batanov-Gaukhman, 2023b)).

For example, the mutually opposite (conjugate) pair of metrics (2) and (12)

dr?

dst % = (1 oy ﬁ) c2dt? — —2 _ — 12(d@? +sin? 0dp?)  with signature (+ — — —) 29
1 - r r22 <1_T_6+ﬁ> g ’
T r%
dsCT = — (142 - D) cde? + —— 4 r2(d0? + sin? 0dp?)  with signature (- + + +) (12%)
LT o (D) g
T r%

can be represented as a sum (or average) of 7 + 7 = 14 sub-metrics with the same components

2 2\ —
Joo = (1 — 7'76 + :?), g1 = (1 — =4 —2) , 922 = 7‘2, J33 = rzsinzﬁ, (22)

and signatures from rankings (21):
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(23)
ds" 2= goodxo® + gr1dx1® + gopdia® + gazdxs®  + dsC T =— goodxe’ — g11dx1” — Gadxa® — gazdxs’® =
ds© "2 =— goo dxo® — g11AX17 — Gppdxa® + gaz dxy®  +  dsUTT P = goodxo®+ gradxi® + gopdxa’— gazdxs® =
dst~ 2= goodxe® — gr1dxi®— Gapdxa® + gzz dxs®  +  dsC T =— goodxe® + g11dxi® + gppdxa® — gazdxs’ =
ds© "2 = — goodxe® — gr1dx1> + gopdxs® — gazdxs’ +dsCTTT = goodxo’+ grgdxiP— gaadxa® + gazdxs® =
dsC* 2 =— gog dxo® + g11dxi® = Gopdia® — gszdxy®  +  dsUTT? =— gog dxi*t gyydxa’ + gapdna® + gzzdxs® =0
dst"~ TR =" goodxo’— g11dx1* + Gppdxs® — gazdxs’ + o dsCT T == goodxe® + Goodxi®— Gapdxa®+ gazdxs’ =
ds 7 = goodxo’ + grydxiP— Gppdxa®— gaz dxs* + dsC T = — goodxo’— gr1dxi® + gapdxa® + gazdxs® =0

ds" "= goodxo® — g11dx1* — goodx2® — goodxs’ +dsCTT = —gog dxo® + grg AXiPF Gopdi® + gazdxst =

Summation (or averaging) in rankings (23) is performed by columns and by rows (§2.9 in (Batanov-Gaukhman,
2023c) and §2.7 in (Batanov-Gaukhman, 2023e)).

Similarly, all other conjugate pairs of metrics (3) — (10) and (12) — (20) can be decomposed into 7 + 7 = 14 sub-
metrics.

In turn, mutually opposite pairs of sub-metrics from rankings (23) can be decomposed in exactly the same way
into sums of 7 + 7 = 14 sub-sub-metrics. This can continue ad infinitum, provided that the condition of complete
"vacuum balance" is met (i.e., if the summation of the entire infinite set of mutually exclusive metrics with different
signatures is equal to zero) (see the Introduction in (Batanov-Gaukhman, 2023a)).

Based on such decompositions of sets of metrics (1) and (11) into additive components with different signatures,
one can form an idea of a seething sea of so-called colored "quarks" and "antiquarks" (see Table 1 in (Batanov-
Gaukhman, 2023e)), similar to the quark-gluon sea in nuclear physics.

Thus, the “electron” and “positron” are infinitely complex, but on average they are stable spherical vacuum for-
mations.

That is, the "electron" is an extremely complex iridescent, but on average stable "convexity" of the outer side of
the A-12-15-vacuum, and its antipode, the "positron", is an extremely complex iridescent, but on average stable
"concavity" of the inner side of the A-12,-15-vacuum.

As a result of averaging the most complex fluctuations of the A-12-1s-vacuum (see the illustration in Figure 1), a
stable metric-dynamic structure of the valence "electron" (1) and valence "positron" (11) emerges from chaos,
which are studied below.

2 Free valence "electron” and "positron”

Let's consider the average structure of a free valence "electron" based on a set of metrics-solutions (1) and the
methods of Geometricized Vacuum Physics and the Algebra of signature" (Batanov-Gaukhman, 2023a, 2023b,
2023c, 2023d, 2023e, 2023f).

The structure of a free valence "positron”, and all other valence colored "quarks" from Table 1 in (Batanov-
Gaukhman, 2023f), is studied similarly.

2.1 Deformation of the outer shell and core of a free valence “electron” and “positron”
We recall that in §2.7 in (Batanov-Gaukhman, 2023b) it was conventionally accepted that metrics with the signa-
ture (+ — ——) describe the metric-dynamic state of the external side of the A.1,-15-vacuum (i.e., the subcont), and

metrics with the signature (— + + +) describe the metric-dynamic state of the internal side of the i.,-1s-vacuum
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(i.e., the antisubcont). The concepts of "subcont" (short for substantial continuum) and "antisubcont" were intro-
duced, on the one hand, to shorten the long terms "external side of the A.,.1s-vacuum" and "internal side of the
A12-15-vacuum", and on the other hand, to create the illusion of two conjugate continuous elastic-plastic media,
for the convenience of describing and perceiving intra-vacuum processes. But let us note once again that "subcont"
and "antisubcont" are not real continuous media, but auxiliary mental constructs, the same as "space" and "time"
in Kant's philosophy. Let's also recall that according to §2.1 in (Batanov-Gaukhman, 2023a), the A.12-1s-vacuum is
a 3-dimensional landscape (i.e., a 30-network) illuminated from emptiness (i.e., the Einstein vacuum) by probing
it with mutually perpendicular light beams with a wavelength of 1.,.-1s from the range A1 =10"12+10"1>cm.

2.1.1 Averaged deformation of the outer shell of the “"electron”

Within the framework of the theory developed here, the averaged metric-dynamic model of the outer shell of a
free valence “electron” is determined by the metrics-solutions (2) — (5), (10) of the second Einstein vacuum
equation R;;, + Agy, = 0:

dsC? = (14 @) c2dt? — —2 12492 + sin? 6 dp?), (2"

T <1—r—6+r—2>
T ‘r2

dsF—2 — (1 + - é) c2dt? — —__12(dg? + sin? 0 dgp?), 3
2 r T3 <1 r_ﬁ_é)
T ‘r2

ds ™% = (1= 1= ) c2ae? — 40 r2(ap? + sin? 0 dg?), (4)
3 rors <1_r_6_é)
T ‘r2

ds{ % = (147 4+ 2) c2de? — 2 _12(dp? + sin® 0 do?), (7

2

T- T T
2 1+2+=
T 5

d55(+_")2 = c%dt? —dr? —r%*(d6? + sin? 6 d¢?). (10"

In this section, we are interested in the neighborhood of the “electron” core in the range from rs ~ 10713 cm to
r~ 102 cm. In this region of the A-12-15-vacuum, the third terms r2/r2 ~10'2/10%8 in the brackets of metrics
(2) — (5) can be neglected.

Therefore, as a result of averaging metrics (2’) and (4"), as well as metrics (3’) and (5’), we obtain

ds/? = (1 - TTG) c2dt? — & —r?(d6” + sin* 0 dp?), (24)
dsz("L)2 = (1 + Tf) c?dt? - (1ir:_6) —12(d6? + sin? 0 d¢?), (25)
ds{?? = c2dt? — dr? — r2(d6? + sin® 0 d?). (26)

Let’s use a similar situation considered in §2.8 in (Batanov-Gaukhman, 2023e).

Both metrics (24) and (25) are solutions of the same first Einstein vacuum equation R;, = 0 under the same
conditions. Therefore, we consider the result of their averaging (see §2.8 in (Batanov-Gaukhman, 2023e))

2
ds3? =~ (ds{™? + ds{?) = c2dt? - dr? — r2d6? — r? sin®  d>. (27)
e
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The relative elongation of the outer side of the A-12-15-vacuum (i.e.,
the subcont) is determined by expression (47) in (Batanov-Gaukhman, : ' ‘ ‘ '

2023c) | |
h_g 1
lz(+) = [1+ % —1, (28) ' ‘ .
Yiio ‘ |
where 1) 1 | \ -
+) '

g;;  are the components of the metric tensor of the curved area of the
A-12,-15-vVacuum; ' ‘
g5P are the components of the metric tensor of the same area of the _
A-12,-15-vacuum before the curvature (i.e. in the absence of its curva- ANy

ture). " 1 L o]
r 3 N 3 r
Fig. 2: Graph of the relative elongation

function (29) 1" = AT—T

Let's substitute into Ex. (28) the components g5 from the averaged
metric (27), and the components g$’ from the original metric (26),
as a result we obtain

A 2
== -1, P =0, 1P=0. (29)

2_
T re-Tg

The graph of the radial component of the relative elongation of the subcont (29) l£+) = Ar/r in the outer shell of
the "electron" is shown in Figure 2. At r=rs~ 10713 cm, this function tends to infinity (Ar/r = ).

2.1.2 Average deformation of the "electron” core

The metric-dynamic model of the core of a free valence "electron" is determined by metrics (6) — (9) and (10)

2 2
dS(+)2 —_ (1 7y r_z) c2de? — dr _ T2(d62 +sin26 d¢2)/ (30)
1 T Té _<1_T_7+ﬁ)
r r%
)2 _ T r? dr? .
dSZ = —(1 +77—E) Czdtz —m—‘rz(dgz +5m29d¢2), (31)
r y2
6
2 2 ar? ;
dsi?? == (1= - ) crae? - - —;_ﬁ) ~12(d07 + sin® 0 dg?), (32)
T ,%
2 _ v, T2\ 2.,  ar: 5 2 .2 2
ds, = (1 += +r62)c dt _(1+r_7+ﬁ> r*(d6* + sin* 6 d¢*), (33)
r o y2
6
ds{?? = c2dt? — dr? — r2(d6? + sin® 0 d?). (34)

We use a similar situation considered in §4 in (Batanov-Gaukhman, 2023e).
Let's average the metrics (30) — (33)
ds14? =% (ds1?+ dsyD? +ds3 D+ dssH?). (35)

As a result, we obtain an average metric
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ds? = c2de? + gD (r)dr? — r2(d6? + sin? 6 dp?), e
where
COTOON Y - - 1
g, () = " (1_7170+é) + <1+T1_0_%) + (1—m—é) + <1+M+r_22> : (37)
e r Te r i3 " e

We substitute the components gi(i” (37) of the averaged metric (36) into the expressions for the relative elonga-
tion (28), where the components gi(i;) are taken from the uncurved metric (34).

As a result, we obtain the relative elongation of the outer side of the A-12-15-vacuum (i.e., the subcont) inside the
core of the "electron" (i.e. in the range from 7 ~ 1072*cm to rs ~ 10713 cm)

+)  Ar + 1 1 1 1 1
== m-1= |3 at  t ~ a1 (38)
(1_m+ ) (1+m_r_2> (1_m_r_2> (1+m+r_2>
s T r s

=0 1f?=0, 1§7=0.

The graph of the radial component of the relative elongation of the subcont (38) l§+) = Ar/r in the “electron” core
is shown in Figure 3. At » = r¢ ~ 10713 cm), this function also tends to infinity (Ar/r = o).

|

K 1 | [ 4 K 1f (] (N

0.5f \ / 0.5F / \ [\
/ \ ‘ / \.

. Fiioy / E <] )\
1 1 il | LN

s " I I's e rr 6

Fig.3: Graph of the function (38) of the relative Fig. 4: Combined graphs of functions (29) and (38) of the relative elonga-

elongation I of the outer side of the A -15-vac- tion 7 of the outer side of the A.12.15-vacuum (i.e., the subcont) outside
uum (i.e., the subcont) inside the core of the “elec- and inside the core of the “electron”
tron”

The combination of the graphs of functions (29) and (38) is shown in Figure 4. These graphs show that the outer
side of the A-12,-15-vacuum (i.e., the subcont) is strongly deformed (more precisely, stretched in the radial direction
to infinity) on both sides of the edge of the "electron" core with a radius of rs~ 10713 cm. With distance from the
edge of the core, the deformation of the subcont decreases. However, as we approach the center of the "electron”
core, the radial stretching of the subcont increases again as we approach the inner nucleolus (i.e., the "proto-

quark" core) with a radius of 7 ~ 1072*cm.
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Radlial extension of the subcont to infinity seems unrealistic. However, as noted in §5.2 in (Batanov-Gaukhman,
2024b), if in the area of raqgiya (see Figure 1 and §4.11 in (Batanov-Gaukhman, 2023f)) the subcont seems to boil
(i.e. becomes more and more broken and twisted, see the illustrations in Figure 18 in (Batanov-Gaukhman,
2024b)), then its geodesic lines can extend almost to infinity, just as the Koch curve extends to infinity as the
fterations of this fractal increase (see Figure 16 in (Batanov-Gaukhman, 2023e)). It is interesting that the Koch
curve was described by the Swedish mathematician Helge von Koch, but A. Einstein's mother was also called
Pauline Koch. There is another coincidence: A. Einstein's teacher of Judaism was called Heinrich Friedman, and
the author of the theory of a non-stationary Universe was Alexander Friedman.

2.1.3 Average deformation of the outer shell and core of the "positron”

The deformation of the outer shell and core of the free valence "positron”, the metric-dynamic model of which is
determined by the set of metrics (11), completely coincide with the deformations of the "electron" with the only
difference that in this case the inner side of the A-12-1s-vacuum (i.e. the antisubcont) is radially extended.

2.2 Subcont flows in the outer shell and in the core of a free valence "electron" and "positron”

As has been noted more than once in (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f), the
theory developed here has a significant conceptual difference from Einstein's general theory of relativity (GTR) in
the matter of the physical interpretation of the zero components of the metric tensor g{’ and g = g{’. In GTR,
the zero components affect the rate of time, while in the geometrized vacuum physics developed here, the zero
components are associated with the rectilinear and rotational motion of the layers of the Amn-vacuum (see §6 in

(Batanov-Gaukhman, 2023c) and §2.8.4 in (Batanov-Gaukhman, 2023e)).

Apparently, both interpretations of the zero components of the metric tensor do not exclude but complement each
other. In a number of tasks, it is convenient to assume that the curvature of space-time affects natural phenomena.
In other tasks it is more convenient to assume that vacuum layers have elastic-plastic properties (similar to ma-
terial continuous media), and the same zero components of the metric tensor are associated with the velocities
and accelerations of these media.

Let’s return to the study of metrics (24) and (25), which describe the metric-dynamic (MD) state of the subcont
in the outer shell of the "electron" (see §§2.8.3 and 2.8.4 in (Batanov-Gaukhman, 2023e))

ds(? = (1 - 76) c2dt? — (f_rf_ﬁ) —r2(d6? + sin® 0 d$?) — MD state of the a-subcont, (24"
ds{™? = (1+%) cde? ~ (1‘ff_6) — r2(d6? + sin2 6 d¢?) — MD state of the b-subcont, (25")
ds{P? = c2dt? — dr? — r2(d6? + sin? 6 dp?) — MD state of the subcont before deformation. (26)

In §6.2 in (Batanov-Gaukhman, 2023c) several kinematic cases of motion of layers of two-sided Amn-vacuum were
considered. We apply this kinematic approach to the use of metrics (24) and (25).

2.2.1 Velocities of subcont currents and countercurrents in the outer shell of the "electron”
For metrics (24’) and (25") the metric (96) in (Batanov-Gaukhman, 2023c) with the same signature (+ ——-), but

in spherical coordinates, is suitable.
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2
ds? = (1 - VCT—Z“) c?dt? + 2v,drcdt — dr? — r2d6? — r? sin? 6 d¢?, (39)

since in this metric, as well as in metrics (24’) and (25’), the components of the metric tensor gi((;’ ) = gi((;’ ) =

Let's compare g{ in metrics (24’) and (39), and as a result we get

2
Te __ Vra
1-2=1-3,

from where we determine the components of the velocity vector of the a-subcont in the outer shell of the "electron”

2
Vra = /— Voa =0, vgq=0. (40)

Now let us compare gS}’ in metrics (25’) and (39), as a result we get

2
T, v
1+76=1+CL2b,

from where we determine the components of the velocity vector of the A-subcont in the outer shell of the "elec-
tron"

2 ’ 2 ’ 2
2 _ C°Tg _ c?rg _ . [c?rg
—Vpp = _T or v, = _|— o= l _r ’
, c2rg
or —iv,, = — Vgp = 0 ’ Vgp = 0. (41)

Also compare g5 in the original metric (26’), and in the averaged

metric (36) with g$%’ in the metric (39), and we obtain

v,(.+)2

1=1-

cz

As a result, we obtain for the subcont velocity in the case of no defor-
mations and in the case of averaging

vM2 =9 P =0 v =o. (42)
r 9 )

According to Exs. (40), (41) and (42), in all radial directions from the
core of the “electron”, the average velocity of the subcont (or ab-sub-
cont) in the outer shell of the “electron” is equal to zero everywhere Fig. 5: An attempt to recreate a sche-

matic picture of the inflow of a-sub-
e [<2Te
T L T

cont and the outflow of A-subcont
to/from the “electron” ragiya

This means that the a-subcont flows in the form of thin streams (currents) from all sides to the "electron" ragiya

along a multitude of spirals, i.e., wrapping around all radial directions (see Figures 5 and 6). In this case, the

a-subcont velocity gradually increases practically from zero to reaching the speed of light ¢ at » = ¢ ~ 1073 cm.

+)2 1 + 1
1Eal)J =z(l7,?a—l7§)=0 or |vr(al)nl=ﬁ

=0.  (43)
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That is, in the area of the ragiya, the a-subcont falls with a speed close to the speed of light into the spherical
abyss-crack between the outer shell and the "electron" core (see Figures 5 and 6). At the same time, the
b-subcont flows away from the spherical abyss-crack in the form of thin streams (currents) in all directions along
a multitude of counter-spirals (wrapping around radial directions), starting from the speed of light cat » = r, and
gradually decreasing to zero.

10001

00004
WU

(=]
&
e

~
4

[

D

VOO0

Fig. 6: Illustration of subcont currents in the outer shell of the "electron": the a-subcont flows in the form of thin streams
(currents) along spirals twisted around all radial directions to the "electron" ragiya with a radius ro = rs, gradually increasing
the speed from zero to the speed of light ¢. At the same time, the &-subcont flows out in the form of thin streams (currents)

along counter-spirals around all radial directions from the "electron" ragiya, starting from the speed of light and gradually

decreasing to zero.

In total, the a-subcont and b-subcont currents are twisted into counter double spirals (see Figure 6), which, on
average, in each local region of the outer shell of the "electron" completely compensate for each other's manifes-
tations. That is, in each local region, a balance of subcont currents and countercurrents is maintained along the
threads (lines) twisted into double spirals (see Figures 6).

The relative radial elongation of these double helices was considered in the previous paragraph (see Figure 2). In
this case, the greater the radial deformation of the subcont as it approaches the "electron" ragiya, the greater the
speed of the subcont currents and countercurrents. It should be expected that when the speed of the radial

subcont currents and countercurrents reaches a certain critical value vr(“;f)

+ c2r,
v = o (44)

their laminar flow becomes turbulent, which corresponds to an increase in the brokenness and twisting of the
subcon radial lines as they approach the "electron" ragiya. It is possible that for the subcont currents and coun-

tercurrents it will subsequently be possible to obtain a number corresponding to the Reynolds number in hydro-
dynamics.

Thus, from the metric solutions (24') and (25") of the Einstein vacuum equations, the soliton character of a stable
spherical vacuum formation (in particular, an "electron") was revealed. Since local radial deformations of the
subcont are supported by the corresponding velocities (more precisely, accelerations, see the next paragraph) of
the subcont currents and countercurrents. With an increase in the radial deformation of the subcont, the velocities
and accelerations of the radial subcont currents and countercurrents also increase proportionally. When the radial
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lines of the subcont are in a broken and twisted state in the region of the "electron" ragiya, the subcont currents
and countercurrents change from laminar to turbulent flow.

Comparison of the kinematic metric (39) with the metrics-solutions of the vacuum equation (24) and (25) is quite
logically justified but is of a heuristic nature. However, we will show that the relativistic method of determining
the velocity leads to absurd results. In GTR, the velocity is determined by the formula (Landau & Lifshitz, 1971)

g(+)g(+)
<—g$s’) + (;a ar )dx“dx‘;
(4) _dl_ 700
Vi =—= — .
/goo dt

Substituting the components g(y/, g’ and gg,’ from the metric (24") into this expression, we obtain the compo-

nents of the velocity vector of the a-subcont

%Y 1 ar ¢ ) ®_ )

UTE(-;) = +a) 4¢ T6\ 4r oy Voa — 0, v
oo~ U (1_76) at (1_76) ¢ ¢a

From these expressions it is clear that the radial component of the velocity at » = r tends to infinity, and at large
r this velocity tends to the speed of light c. Obviously, this result is absurd.

2.2.2 Acceleration of subcont currents and countercurrents in the outer shell of a free valence “electron”

In §5 in (Batanov-Gaukhman, 2023d), Ex. (108) was written for the acceleration of the Am~vacuum layer in the
stationary case

1

a=d= J7C2 {_gmd(mm) ¥ \/ﬁ[g x rotg]} =Ev + [vxBv], (45)

where §(g1, 9., 93) is a 3-dimensional vector with components

do1 Jo2 do3

g1=:g—00, g2 = =5 93T Ty (46)
E,=E,=—y.grad @5 (47)
B, = §,, =Y~/ 900 rot?; (48)
@ =In./goo is geometrized scalar potential; (49)
A=g is geometrized vector potential; (50)
Ve = 6—22, is Lorentz factor multiplied by c2. (51)

v
)

E, is geometrized vector of eclectic intensity with components:

d1ln,/goo _ d1ln./goo d1n,/goo
ax? 0x?

Envi=ve 7 Ey =ve ’ Eys =ve 9x3 " (52)

B, is geometrized magnetic induction vector with components:

By1 =Y +/9oo (Z% - Z%)r By, =ve v Yoo (% - %)/ By =vc v Yoo (% - %)- (53)
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In metrics (24’) and (25’), describing the metric-dynamic state of the
subcont in the outer shell of the “electron”, all mixed zero components

of the metric tensor are equal to zero (g(();) = g{*) = 0). Therefore, ) | | | |

Eq. (45) for the acceleration of the subcont in the stationary case is | |
simplified to a vector equation of the geometrized electric field

+)

m

+) ) c2 aln |90 B s |
Evu =a, =-— —%  ox ., where u=1,2,3. (54) il .‘f \
Tz A { |
Let's substitute into Ex. (54) the zero component of the metric tensor "
g$¥ from the metric (24’) and the corresponding velocity (40) o ; —
(M2 = 2 — czre .
Vit = vrg = =7, as aresult we obtain Fig. 7: Graph of function (59) £
2 0dln 1- Te 2
Elg-rra) — a£+a) ___c (*a r) _ _ c4rg ’ E(9+a) -0, E((;a) =0, (55)
o)

O _ el _ (1 _T)5
where 5a—9 = (1 )ar'

Let's substitute into Ex. (54) the zero component of the metric tensor g(+) from the metric (25") and the corre-
2
sponding velocity (41) v(¥)2 = p2, = — CT , as a result we obtain

2 dln [(1+%6 2
Egb) _ af’b) ___c¢ ( r) _ C°Tg E(+b) —0, E(+b) =0, (56)

*b - ’ 0
[1+78 or 2r2 |(1+78) ¢
T T

9 _ juHbp) 2 9
where ar g or (1 t+ )ar

As shown in the previous paragraph, the inflowing currents of the a-subcont and the outflowing currents of the
b-subcont are twisted into double spirals (see Figure 6). Therefore, according to §4.4 in (Batanov-Gaukhman,

2024a), the total radial acceleration of the subcont a“‘”’) is determined by the complex Ex. (104) in (Batanov-
Gaukhman, 2023d)

a(+ab) ( (+a)+la(+b))

+ L (+b
¢ = ES® +iEGY), (57)

7l

more precisely, the modulus of this expression
(58)

2
(+ab) _ p(+ab) _ 1 ’ (+a)2 (+b)2 _ 1 _ c2rg c2rg _1c? c2rg
“r =B = V2 Er *E V2 2r2 (1+r—5) * 2r2 (1—_ T V2 22 ’ 1+ Tr6 ZF
r 2r? |1

As a result, it turned out that the acceleration vector of the subcont (or the geometrized vector of the eclectic
intensity of the subcont) in the outer shell of the “electron” is given by the components
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2
a1€+ab) — Elg:ab) — C“Tg =, (+) E(+ab) 0} (-;) E(;ab) 0. (59)
2r2 1——6
(+ab)

The graph of the radial component of acceleration a, is shown in Figure 7.

From Exs. (59) it follows that at » » 7s

+ab +ab c?r,
g(ra) _ plrab)  crs.
2r2

(60)

(+) E("'ab) 0 (+) E(+ab) 0.

In classical electrostatics, the vector of the electric field strength of a point charge (in particular, an electron) in a
vacuum is determined by the components:

E,=——, Ep=0, E4=0, (61)

amegr?’
where e =-1.60219-10"° C is the electron charge; & = 8.85419 10712 F/m is the electric constant.

Comparing Exs. (60) and (61), we find the following correspondence between the parameters of classical electro-
statics and the parameters of geometrized subcont statics (i.e., stable accelerated motion of the subcont in the

outer shell of the “electron”)

LNy (62)
4TE 2
In classical electrostatics, the heuristic concept of the "electric charge of an electron" e characterizes the intensity
of its electromagnetic interaction with other particles. In the geometrized vacuum electrostatics developed here,
the unclear ratio e/¢, is replaced by the product of clear concepts c?r,. The speed of light c is a fundamental
constant characterizing the elastic properties of a vacuum, r, is the radius of a ragiya, i.e. a spherical abyss-crack

surrounding the core of a stable vacuum formation (in particular, an "electron"), see Figure 8.

outer shell

\\

Fig. 8: The outer shell, multilayer ragiya (neck), core and inner nucleolus of a spherical vacuum formation
(in particular, an “electron” or “positron”) and its fractal illustrations
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In quantum electrostatics, the effect of polarization of the physical vacuum around a point charge is taken into
account. The vacuum seems to boil in the environment of the electron core (see Figure 8). This allowed quantum
theorists to introduce the concept of an effective electric charge

Coff ﬁ, where 7 is the reduced Planck constant.

1——ln
6T 4rme

The electric field strength around the effective charge takes the form

e
E, = . (63)
2 2
471:507"2(1—66?lnM:1 )
e

When comparing the radial components of the field strength vector (59) and (63), we again discover an obvious
analogy

1 1
> U d > .
_e it g
\/(1 612 ln4rme) \/1_72

In classical electrostatics, the potential of the electric field around a point charge e with strength (61) is determined
by the expression

(64)

e dr e

e
Pe = —fETdT - _f41rsor2 dr = " amey 12 amegr! (65)
while the potential energy contained between two spheres with radii 7, and »»
2T (2T (T T e Tqe (T2 1 e e T
Ue=J; frlz ¢ drdodep = 4m? rlzmdr = ?fr:;dr = g(ln r,—lInr) = ;lni. (66)

In the fully geometrized vacuum electrostatics developed here, a similar potential of the subcont field strength in
the outer shell of the “electron”, taking into account (59), is equal to

1

2_p2
r [re-Tg

2 2
pL ) = —[aPdr =~ [EG®dr = — [T _gr=-Tof

2
2
r
2 [1——6
2r 1r2

2
dr = —“arcsec—+C, (67)
2 7
6

where the table integral

dax 1 x 1 a .
fxm =—arcsec- + C = -arccos~+ C is used.

Thus, the fully geometrized subcont electrostatics corresponds to the experimental data and reveals the geometric
nature of the electric charge of the electron.

Note that the relative elongation of the subcont (29), as well as the velocity (43) and acceleration (59) of the
subcont current in the outer shell of the "electron" are determined relative to the initial substrate of the "electron”
(34). A change in the substrate of the "electron" (for example, by transition to another coordinate system) can
lead to instability of the vacuum formation.
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2.2.3 Velocities of subcont currents and countercurrents in the core of a free valence “electron”

We compare the zero components ggg> in metrics (30) — (33), which define the metric-dynamic model of the

“electron” core, with the zero component in the kinematic metric (39).

As a result, we obtain the velocities of four intertwined subcont currents inside the “electron” core

2 2 2 2:2 2 2
(1+ir—2“)=(1—r—7+r—2)—> vﬁaz(r——rl)cz — vmz\/r—c—”—czc - for asubcont, (68)

2
Te T 3

2 2 2 2:2 2 2
(1+"”’)=(1+T—7—r—2) - vﬁbz(—::z+r77)c2—> vﬂ,z\/-rg +T7—C=c\/r—7—r—2 for b-subcont,  (69)

76 T T Te

2 2.2 2 2
)=(1-2-5) = vh=(-5-2)¢ - we= [Tk 5+ for csubcont,  (70)
6

2 2 2 2:2 2 2
(1+%) = (1+24%) » vh=(5+2)c¢  — va= [Sr+20=c 542 for dsubcont.  (71)

18
Since v,; cannot exceed the speed of light, the conditions must be satisfied

0<sD+7<1, 0<5-7<1, 0<Z-D<1. (72)

)

<
=<

2 2
6 6
At r=r¢ (i.e. in the region of the periphery of the “elec-
tron” core) all velocities (68) — (61) tend to the speed of
light c. Also at »= r; (i.e. in the region of the inner nu-
cleolus, i.e. near the proto-quark core) all velocities
(68) — (61) tend to the speed of light ¢

Thus, at the level of consideration of the nucleus of the
valence "electron" on each radial direction four intra-
vacuum flows (currents) are wound.

Two of these helical flows (b6-subcont current and ¢sub-
cont currents) flow away from the periphery of the core
of the "electron", first at a speed close to the speed of
light, then slowing down and then at the site of the inner
nucleolus (i.e. near the proto-quark core) again acceler-
ating to the speed of light.

Two other counter-rotating helical currents (the a-sub-
cont current and the g-subcont currents) flow away from
the inner nucleolus, first at a speed close to the speed
of light, then slowing down, and then at the periphery
of the “electron” core again accelerating to a speed close
to the speed of light.

Fig. 9: A twisted tetrahedron, along one side of which
For clarity, it is convenient to assume that the a-subcont the  a-subcont moves with acceleration, along the
and b-subcont, as well as the counter-rotating ¢-subcont other side the &-subcont flows with acceleration, along
and c-subcont currents, flow along four sides of one the third and fourth sides the c-subcont and ¢~subcont
twisted tetrahedron (seé Figure 9) flow towards them with acceleration.
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At the same time, for an outside observer, the periphery of the “electron” core and the periphery of its inner
nucleolus rotate intricately at a speed close to the speed of light.

The total velocity of each radial subcont current (i.e. a bundle twisted from 4 threads) inside the core of the
"electron" is determined by the quaternion (Batanov-Gaukhman, 2023d)

1 . .
VUr(abcd) = N7 (Vra + WVrp+jVre + kvpg), (73)

more precisely, its modulus

_ 1 2 2 2 2 _ ¢ r2 r, rZ o r r2 r2 r7\ _
|vr(abcd)| _\/_Z\/vra+vrb+vrc+vrd = E\/(%_7)+(_E+7)+(_E_7)+(E+7) =0. (74

That is, the intranuclear subcont currents and counter-currents on average completely compensate each other's
manifestations.

To obtain the radial components of the acceleration vectors of the four subcont intra-nuclear currents, we sequen-
tially substitute into expression (54).

2.2.4 Acceleration of subcont currents and countercurrents in the nucleus of a free valence "electron”

To obtain the radial components of the acceleration vectors of the four subcont intracore currents, we sequentially
substitute into expression (54)

+) (+)
ED — & — _ ¢z 0lngo - _ c? g11(+) 9ln oo
r Jl_ v(H)2  gxk Jl_v(+)2 ar !

c2 c2

(54°)

the covariant and contravariant components of the metric tensor g(+) and g''™ from metrics (30) — (33) and
the corresponding velocities (68) — (71)

_on 1—7—7+T2 2 T_7+2_;
alt® = (2 / -y T 6 — a-subcont acceleration, (75)
T7 T
21 7+%
dln 1+T—7—ﬁ 2(r7  2r
(+b) 2 r,  r? Torg “\F +r% .
a =c* [1+2L-= =— — b-subcont acceleration, 76
T 2
rorg ar ry 2
2 [1+Z1-=
r r%
_r7_12
(+¢) 2 r, 12 ot 1% ] 62(1_7_%) .
a T =c*|1-ZL—-= = = — ¢-subcont acceleration, (77)
r Tg ar ry 12
2|1 T2

ain [1+Z+ 2 2(r7 _2r
(+d) r, T2 T ‘r% “\rZT 2 .
a =—c? 1+ Tt — = ———~ - ¢~subcont acceleration. (78)
6

The remaining components of the acceleration vectors of the four subcont currents are zero.
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The total radial acceleration of the subcont inside the core of the “electron” is given by the averaged quaternion
(84 in (Batanov-Gaukhman, 2023d))

)

+ +b + +d
rabed) =77 (a( @ 4 /a( )+ ja( 94 /(a( , (79)

a

which describes the interweaving of 4 subcont currents and countercurrents around each radial direction inside
the core of the “electron” (see Figure 9).

The modulus of the averaged quaternion (79), taking into account expressions (75) — (78), is equal to

C___)z . (80)

a

+) 1 (+a)2 (+b)2 (+0)2 (+d)2 _ c? (rz r2>
r(abcd)| Vi Jar t+a; +a; + a, — GT +
2
6

The graph of Function (80) is shown in Figure 10.

Fig. 10: Graph of Function (80) for the conventionally accepted r;, = 0,001, r, = 10, ¢ =1.
This function determines the distribution of the spiral-radial component of the acceleration
vector of the subcont inside the core of the "electron”

From the graph in Figure 10 it is evident that the subcont has large accelerations near the periphery of the
"electron" core and near the inner nucleolus (i.e. the core of the “proto-quark”). However, this is not the laminar
acceleration of the subcont in the radial direction, but the averaged helical-radial acceleration of rotation of the
four subcont currents along the intertwined 4-helix wound on each radial direction (see (Batanov-Gaukhman,
2023d), Figure 10). Such an accelerated helical-rotational motion of the subcont currents and countercurrents
around all radial directions creates an force that stretches the subcont, as shown in Figure 3. Moreover, the greater
this helical-rotational acceleration, the greater the stretching of the subcont in the radial direction.

If we neglect the small terms 77/# and r7/#* (or when r7 = 0) in Ex. (75) — (78), we obtain:

a"Y = <L _ asubcont acceleration, o - T — c¢-subcont acceleration,
2 2
rZ 145 2 1
Te
2 2
alt? T - p-subcont acceleration " = L — d*subcont acceleration.

=7 ’
2 2
T T
2 1T 72 1422
Te Te6

In this case, the total acceleration of the subcont in the core of the "electron" in this case is equal to
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2

2
a§+) = i\/aff'a)z +a{th2 4 graz 4 Gz _ < St —=t—=+——== . (80a)

I T T T 2
3 Tg Tg Te L3 1__r4
6

The graph of function (80a) is shown in Figure 11.

Fig. 11: Graph of the function (80a) of acceleration of the subcont (with conventionally accepted 76 = 1, c = 1),
in the case where there is no internal nucleolus inside the core of the “electron”

3 Low-intensity "electron” - "photon" interaction

Let's consider the interaction of a free valence "electron" with a "photon". A separate study is necessary for a full-
fledged study of such interaction, but here we will present only the most basic aspects that concern the interaction
of a stationary free valence "electron" with a "photon" whose wavelength A is comparable to or slightly smaller
than the size of the "electron" core (rs ~ 10713 cm).

The "photon” and "antiphoton" are defined in §4.8 in (Batanov-Gaukhman, 2024c) as two mutually opposite wave
disturbances of the A-12-15-vacuum, which are described by solutions (130) and (131) in (Batanov-Gaukhman,
2023e)of the lianized Einstein vacuum equation (127) in (Batanov-Gaukhman, 2023c).

asexp{ilwt—k-r)} and aexp—{i(wt—k-r)}, where a:and & — amplitudes of oscillations. (81)

We will study how these “photons” interact with the outer shell of the “electron”, the metric-dynamic state of
which is described by the metrics-solutions (24) and (25) with the signature (+ — —-):

2
ds{P? = (1-2) c2ar? - (1‘1_2_6) —12d0% —r2sin? 9 dp? — state a-subcont, (24"
2
ds{? = (1 + rf) c?dt? — (1'irr_6) —r2d02 —r2sin2 0 dp? — state b-subcont, (25")
or the averaged metric (27)
ds3? =~ (ds{™? + dsf?) = c2de? - %%drz —r2d6% — % sin? 6 d¢p>. (27")

-2

"
We represent the wave solutions (81) as a two-component column matrix and its Hermitian conjugate row matrix
(8§11 in (Batanov-Gaukhman, 2023b))

~ iz—n(ct—r)

- —iz—n(ct—r)
(dieiz%(ct—r) d*_e—iZTE(ct—r))’ <a+e 2 > (82)
a_e 2
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In this case, the metric (27") must be represented as a spintensor (see §10 and §11 in (Batanov-Gaukhman,
2023b)).

Recall that the quadratic form s+ ==72 = x2 — x? — xZ — x2 is the determinant of all the following 2x2-matrices
(i.e. Hermitian spintensors) (see matrices (64) in (Batanov-Gaukhman, 2023b)):

Xg+X3 X +ix, Xg —X3 X —ix, Xg+X3 X —ix, Xg—X3 X +ix, X; =X, —Xg+X3
X — Xy Xy —X3 X +ix, Xxot+Xx3 X +ix, Xy —X3 X —ixy Xy +Xx3 Xgt+X3  IxptXx,
x0+x1 X3 +ix, Xo+X;  X3—ix, X3 +ix, Xy =X —Xg+X3
X3 +lx2 Xg +x1 X3 +ix, Xy — X +X; Xg+X3 X, +X;
Xq +x2 X +zx3 —ix3 Xg + X, X +ix3 X;—X3 —Xy+Xx
X +lx3 Xo + X, X +ixs3 Xg + X, Xg+X, iX;t+Xx3

Xo =X
X3 — Xy
( [ —ix;
Xo +X3 X, +ix; Xy +ix) X3 =X, —Xg+Xx
x2+zx1 x0+x3 —ix; Xg+x3 Xg+X Ix3+Xx,
Xo — X2
X3 — X

Xog t X3

Xy +1X;

x0+x1 X2+DC3 Xo + X

3 — X
0~ X
l)C3]
—ix [ j
Xy — Xy — X3 Xy +ixy X, —x3 —Xxg+Xx
Xy +zx3 Xq +x1 X +X; Xg+X; Xy t+Xx3
X +x2 X3 +lxl Xo tXy X3—ix; X3 +ix; X3 =X —Xy+X;
—ix; X3 +1x1 X +x2 X3 +iX; Xy —X, Xg + X, Xg+X,  ixz+X;
—Xg +x3 Xy —X; X+ X3 iX;—X3 Xy +Xx, X, —X3 Xy +Xx X3 =X Xy+Xx,
x0+x3 X, + X —XotX3 Xy, +Xx —Xo+Xy x;+x3)\—xg+x; X, +x3 —Xg+X, ix3+x

For example, we write one of the variants of the spintensor representation of the metric (27")

Xy +ixy

cdt + ——dr  rsinfdg + irdd

T2
}1—73
dt — ——d
rsin@d¢ —irdd € t—r r

To shorten the notation, we get rid of the differentials and represent the matrix (84) as a sum of matrices

——  rsind +ir 0
1—:—‘25 1_@
10 \} 2

=( )+ +( 0 rsin6)+(0 ir)
1 0 1 0 1 rsiné 0 —ir 0/

rsinf —ir - 2 2
T -3
1--8 r2

2

p

(84)

1+
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By analogy with example 2 in §11 in (Batanov-Gaukhman, 2023b), we leave in this matrix only the spatial com-
ponents

1

rsinf +ir 1 0
2
1—r—g ré
r 1--% .
N T 0 rsind 0 ir
= +( ) )+( , ) 85
1 0 _ 1t rsing 0 —ir 0 (85)
. . - >
rsinf —ir 1_@ 1_:_2
72

As shown in §2.11 in (Batanov-Gaukhman, 2023b), the projections of the spin of the wave perturbation A-12,-15-
vacuum on the coordinate axis for the case when the metric 3-space has the signature (+ — — -) can be defined
using the spintensor (77) in (Batanov-Gaukhman, 2023b)

(86)
- X1 X3 + x5\ (S1\ _
(s1,52) (x3 —ix, —X, )(Sz) -
o fex e (0 =1y STy e oy (0 =IN[S1Y . v ey (—1 0\ (S1) _
= —x,(s1,53) (_1 0 )(52) xZ(Sl'SZ)(i 0)(52) x3(51,52)( 0 1) (52) =
= —(—s351 — 5351)%1 — (is351 — i5{S3)x; — (=511 + $35,)%3.
Using matrices (82) and (85), we write the following expression
! rsin@ +ir
2
1-= L2TC
27 2T " a e_LT(Ct_T)
(aref7n  gre~txtet=n) ( i Zct-r) | (87)
1 d_el 2 ct—r

rsinf —ir >
Te
1—1_—2

Similarly to (86), we obtain the projections of the spin vector s of the considered wave vacuum disturbance on
the axes r, 9, ¢ using the sum of matrices (85)
1

> 0
Te 2T
1-= = —i=(ct-1)
2
2m. _.em. r a,e A 1 — = —% =
(sp) = (@refzen  greizern) . . =-—(ala, —aia.), (88)
0 _ a eLT(Ct—T) r%
r2 B -
1--8 r

21
. ~ —i=(ct-r)
2T b _2Te . 0 iry[ase 4 R (e i4—n(ct—r) . —i4—”(ct—r)
(s) = (aze T qe=Fe)( 0)< 22 (ct—r) > = irlaa-e 5 —ata e
ae

2T
. i)
om _am 0  rsing\(a.e 7 [ o et | e i3 (ct-r)
(54)) = (diell(“ ) ate 5 (et r)) (rsinG 0 )(d eizf(ct_r) ) _ rsmG[a_,,a_ell ct-r tata,e it ]’

The initial phases of the conjugate pair of oscillations (82) are taken into account by the complexity of the ampli-
tudes a+ and a—. Therefore, without loss of generality, we can set ¢+ = ¢_= 0, i.e. consider a+ and a— as real
numbers. In this case, Ex. (86) take the form:
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(s;) = —==(a_a, —a_a,) =0, (89)

-7
r2

AT
(sg) = ir [a+ a_ez ™

AT
—_]— t_
—a_a,e 7 (c r)],

am P
<S¢> =rsinf [a_a+617(ct—r) + a_a+e—17(ct—r)].

When the amplitudes of the forward and backward waves are equal, a+ = a= a/4nr?, and also taking into account
the formulas

cosx = %, sinx =2 ;f_ (90)

expressions (89) are simplified

(s;) =0, (91)
az . [ az . s

(sg) = — 23 sin [47 (ct — r)] == 5735in [47 (tw — kr)],

a? . 41 _ a? .
(54,) = 523 sinf cos [7 (ct — r)] = S33sint cos[2(tw — kr)].

It turns out that the spin vector of the wave vacuum disturbance ("photon™) rotates in a plane perpendicular to
the direction of its propagation, and the magnitude of this vector decreases with increasing distance » from the
center of the core of the "electron". Thus, the end of the spin vector describes a spiral that converges as it
approaches the core of the "electron".

However, we have considered only one of the possible options. As an example, let’s consider another option, when

the metric (27") is represented as a determinant of the matrix
1

cdt + rsin6de = dr + ird6
Te
-2
) r . (92)
dr —ird8 cdt —rsin6dop
7
=72
Performing operations similar to (84) — (84), we obtain
0 1
Te 21
1-—= - —i—(ct-r1)
2 2 T a,e "2 1 v s —itmece— R Lo
<Sr) = (dielTﬂ(Ct_r) C_lie_LTE(Ct_r)) . ( _+ an ) — — (a_a+e i (ct=7) + a+a_e’ 7 (et r))’
— 0 1-8

N a_e 2
Te
1--3

2T
. - —i=(ct-1)
. . a.e 2 T ow - ict— U o
(sg) = (d* elZTE(Ct_T) d*e_‘ZTn(“‘r))( 0 Lr) o =ir [aia_elzl(” m_ ata,e i (et r)], (93)
+ - —ir 0 = i==(ct-1)
a_e 2
2T
i = —i5(ct-1)
2T 2T rsin@ 0 ae 7 s —x = —x =
<S¢> = (diell (ct=r) gre~ia et r))( 0 —rsin 9) =rsinf(aia, —aa-).

ie izTn(ct—r)

With similar simplifications we obtain the components of the spin vector of the “photon” in this case
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(s;) = %\/% cos[2(tw — kr)], (99)
1--%

(sg) = — %sin [47” (ct — r)],

(s¢) = 0.

In order to fully describe the low-intensity interaction of a "photon" with the outer shell of a resting free valence
"electron", it is necessary to consider all possible ways of representing the quadratic form (27’) as determinants
of 2x2-matrices (i.e., Hermitian spin tensors) of type (83) and find the components of the "photon" spin vector
for each of these cases. Then it is necessary to average the results obtained.

4 Isospin of the core of a free valence “electron”

We note once again that a quadratic form with any of the possible signatures from the ranks (21), presented in
diagonal form, can be written in many ways as a determinant of a second-rank spin tensor, for example

(95)

ds™M? = goodx®dx® — gy xtdxt — g,,x?2dx?? — gaax3dx® = <

Where yi = ‘\’gii .

yodx® + yadx®  y,dx® + iyzdxz)
yidx' —iy,dx®  yodx® —ysdx®/

This matrix can be represented as an A4 matrix

dx? +vy.dx3 dx! + iy, dx? ;
@ _ (Yo ¥3 Yq P _ o(l 0y _ 1(0 -1\ _ 2(0 =iy _ 3/—1 0
= _<Y1dx1—iy2dx2 Yodx® —y,dx® =y0dx (o ) =yadxt (5 ) =vadi? (i ) =ysax (G0 7). (96)

where o =((1] (1)), o™ =(_01 _01), a" =((l) Bi), A =(_1 0) (97)

is a set of Pauli matrices.

Similarly, for a diagonalized quadratic form with the opposite signature (— + + +) we have one of the options for
its representation as an A4 matrix:

Vodx® +ysdx®  iy;dx! + y,dx?

dsM? = —goodx®dx® + gy dxtdxt + gppdx?dx® + g33dxdx® = (iyldxl Cyad? —yydx® + yydx®

24O = (yde0+y3dx3 iY1dx1+Yde2>:_y0dx0 (—01 0)+y1dx1 (0 i)+y2dx2( 0 1)+y3dx3 (1 0)’

4 iy;dx! —y,dx? —yodx® + y;dx3 1 i 0 -1 0 0 1
(99)

# _(-1 0 ® _(0 i ®_(0 1 ®_(1 0
where ¢, _(O 1), g, _(i 0), o, —(_1 0), o —(0 1) (100)

is a set of Cayley matrices.

Let's assume that all elements of length dx’ are equal to one (dx’ =1), then the A4 matrices (96) and (99) take
the form
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AE;) _ (Yo tys it iYZ) _ (Yo 0) _ ( 0 _Y1) _ (.0 _iYZ) _ (_Ys 0 >, (101)
YVi—W2 Yo—Vs 0 yo —y1 0 lyz 0 0 Y3

) _(Yotys iy1+Y2 ) _ (_Yo 0) ( 0 iY1> ( 0 YZ> <Y3 0)
A7 = ( ; = - + (. + + :
4 Iy1—=yY2 —YotVys 0 v iyi O -y O 0 y;

As an example, we imagine the metric (6)

2 2
ds{*? = (142 - D) c2dt? - —T—< — r2(d6? + sin® 6 d?), (102)

2
7 )
Te

determining the metric-dynamic state of the a-subcont in the core of the "electron", in the form of a spin-tensor
determinant

2
/1+rr—7——:2cdt—rsin9d¢ ———dr —irdf
r7 12
© 1+77—E

. (103)
1 .
\ T4 tirdd /1+T—’—§cdt+r5in9d¢/
1+7—r—2 r 3
6 det

We write this spin tensor taking into account dx’ =1

r,  r? . 1 .

/1+———2—r5m9 - —ir
T T6 1+T_7_ﬁ
r r%
(104)

Note also that any binary event with probability of outcome 2 (e.g., a ball spinning clockwise or counterclockwise;
a coin landing on heads or tails) can be described by spinors. For example, clockwise rotation is formally given by
spinors (i.e., bra- and ket-vectors)

|z+):\/§(é) and |z+>*:(z+|:\/%(10), (105)

such that (Z +|Z +) = §(1 0) ((1)) - %

In this case, counterclockwise rotation is formally given by spinors

|z—)=\E(2) and |z—>*=(z—|=\E(o1), (106)

1

suchthat (z-1z-)=30D () =2, @-1zH=20D())=0.

47



Avances en Ciencias e Ingenieria - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman

Inside the core of the valence “electron” there are four layers (6) — (9), therefore, to study their isotopic rotation

(isospin), we will use the following spinors

|z+)=\/%(é) and |z+>*=(z+|=\/%(10),
w‘“ﬂﬁ@) and w-y:w—paﬁm1y

(107)

(108)

Using the spintensor (104) and spinors (107), we determine the 4-vector of isospin of the g-subcont

2
’1 +————rsm9
Te

(s¢0) = \/%(1 0) 1 \P(l

+ i (10) (—T i)m ’ T s?n 9) ((1))

with components

2
1+2Z-5 0
(+a) (1 0) T T62 (1)—1 1+r_7_ﬁ
2 0/ a r r2’
0 1+2-5 °
T T62
1
0 —
1472-5
(+a) _ 1 1\ _
s =2(10) 1 () =0
1472 ri 0
Te

=20l )00
(+a) (1 0)( —rsind rs?n 9) ((1)) = —%r sin 6.

Similarly, the 4-vectors of isospin are defined:
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- b-subcont [for metric (7)]

2
st =2 1-245, 8 =0

t 4 r o rZ r ’ 6

S(+b) =0 S(+b) _ 1

=0, s, _—erinB;

- ¢subcont [for metric (8)]

(+0) _ 1 ry, 12 (+¢) _ (+¢) _ (+¢) _ 1 . .
S, —4’1+T+T62, Sy =0, sg ~ =0, Sy = 4rsm@,

- d~subcont [for metric (9)]

(+b) _ 1 oy 1r? (+d) _ (+d) _ (+a) _ 1 _ .
S; =3 1 s Sy =0, s =0, Sy = 4rsm9.

The components of the general isospin vector of the subcont in the core of the "electron" are equal
to

(111)
stm =i\/st(+a)2 +st(+b)2 +st(+c)2 +st(+d)2 =i\/(1+r77—§) + (1—:—7+%)+ (1+r77+%) +(1 —?—% =%=%,
st =, séﬂ =0, Sé+) = \/Sé)+a)2 + sgrb)z + Sé+c)2 + sé;’d)z = %\/m = %rsin 6.

Another type of isotopic rotation is possible, which is formally given by complex spinors
Iy +):\/§(é) and |Y +)" = (¥ +| :\/%(i 0), (112)

IY——):/J%(?) and IY-—Y:=(Y'—|=:JE(Oi) (113)

1, iy _ 1 1 ~(0) 1
such that W+HH0—10®QJ——Z,(Y—W—f—ﬂOOQ)——;
In this case, with a similar use of the spin tensor (104), the components of the general 4-vector of the isospin of
the subcont in the core of the “electron” are equal to

St(+) = _%, ST(J') =0, sé” =0, sg) = %rsin 6. (114)

Results (111) and (114) turned out to be analogous to the spin quantum number of classical quantum mechanics
s = . However, this is only the beginning of the study of the isospin properties of the diagonal quadratic form
of type (6) or (102).

Within the framework of the Algebra of signature, the metric (102) can be represented as the sum of seven sub-
metrics from the left rank in Ex. (23) with signatures from the left rank (21):
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2
ds2z = (1 +rr_7_:—2) c2dt? +d—+r2dt92 +r?sin? 0 d¢p? - — ai- subcont, (+ + + +) (115)
2 ry_r2
) (147 )
_ (1 n T?7 _:_2) c2dt? — ﬁ_ r2d6% + r2sin® 0 dp? + — a-subcont (- — — +) (116)
6 425
+(1+r_7_ﬁ) 2de? — 42402 4 2 sin? 0 dp?- - a-subcont, (+ - — +)  (117)
roT <1+r—7——2> '
Y]
_(1+r—7—ﬁ)c2dt A L2402 _25in2 9 dg? + - a-subcont, (- - +-)  (118)
T r62 <1+T_7_ﬁ) '
r o2
+(1+T—7—ﬁ) 2de? + 4 6 —12d0% —r?sin? 0 dp? - — a&-subcont, (+ + - -)  (119)
r 1 (1+r_7 %) y
T r6
- (142 -5) et 4 s - r2d0? — 1 sin? 0.dg? + — a-subcont, (- + - =) (120)
’ (1+-5)
+(1+_7_’_2)62dt2—d7+r do? —r?sin? 6 dp?. —arsubcont, (+ - + -)  (121)
o <1+777—%>

Let’s consider only one of the seven terms of this expression, for example, (118) with the signature (— - + —) (the
remaining terms of this expression are described similarly).

As already noted above, the sub-metric (118) (of the form s—=72 = —y2 — y2 4 y2 — y2) can be represented as
the determinant of one of the A%+ -matrices:

Yo +1y3 }’1+}’2) <Yo+i)’3 y1+yz) (—y0+iy3 Y1tV

(J’o +iys —-n+y ) (122)
—Y1+Y2 Yo+iys —Y1+Y: —Yotiys yity:  Yot+iys [

Yit+Yy2 —Yotiys

—Y1 fyz —Yo +iy3
Yotiys Y1t

yity:  Yot+iys
Yo+ iy Y1+

yit+y2 —Yotiys

( —Y1t+Y2 Yot iY3)
Yotiys —yi+y

—Yot+iy: Y1+

Yotiyi Y3ty

+y: Yotiy —V3+Y: —Yotiy: ys+y2  Yot+iv ys+y2 —Yotiy:
—yv3+y: —Yo+iy:

Yotivi Y3+

)
( )
(—yo +iyi —yst 3’2) (3’0 +iyi —ys+ 3’2)
( )

(_3’3 +Y2 Yot i3’1>

Yo+iys —y3t+y2 Yo+ iyi —Y3t+Y: —Yot+iyi Yzt
Yot+Y2 Y1tiys

—y1+iyz —Yo+V:

Yo+tyz —yi1t+iys
ntiys —yot+y2

:
< ) |
35 2 |
()’3 + Y2 —y0+iy1) ( Y3+ ¥2 J’o+i3’1)
< ) |

(_J’o + Y2 ¥t iY3) (_3’0 + Y2 N1 + iY3)
Yitiys Yot Y1 tiys Yot

rae  yo = (1+———)Cdt y1=d7r, y, =1rdf, y;=rsin0de.

2
1+2Z2-5
T 'r6

If we assume that each of the AZ("*')—matrices (122) is realized with some probability cZ (¢) (which can change

with time ), then the average A% ~*7-matrix can be represented as
AT =AY + 20A T + AT+ L 4204, (123)
or AU TY) =31 2(0)AKCTY, where ¥R, (o) = 1. (124)

In the simplest case, when all ci; = 1/n, Ex. (124) takes the form
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AT =T AT, (125)

Some characteristics of the random processes under consideration can be obtained on the basis of spin-tensor
analysis

se 7 = WA )+ Wl AR ) + sl AT )+ (45T ), (126)

where the "bra" and "ket" vectors have the form

Wl = @O0 =500 0 ) =(*)=ao () (127)
and / or
Wil = (@©©,0 =500 0 1w = (D)= (]), (128)

where ¢, (t) and ¢, (t) are complex conjugate probability amplitudes.

The chaotic fluctuations of all sub-layers (115) — (121) and layers (6) — (9) of the subcont inside the core of the
“electron” can be described similarly.

A separate study, which is beyond the scope of this paper, should be devoted to the probabilistic description of
intra-vacuum fluctuations. However, we note that all metrics and linear forms with which the Signature Algebra
operates in this study are only the result of averaging extremely complex and intricate distortions of the A-12-15-
vacuum layers, sub-layers and sub-sub-layers ... and interweaving of subcont currents (see Figure 1).

5 Infinite "electron” (continued)

In the previous paragraphs, the free valence "electron" was investigated as a result of elastic-plastic deformation
of the outer side of the 1-12-15-vacuum. It was already noted that the valence "electron" is a kind of initial skeleton
of this, on average, stable spherical vacuum formation.

Each solution metric (2) — (10) can be represented as a sum of seven similar sub-metrics with signatures from the
left-hand side of the ranking expression (21) or (23). Each sub-metric can also be represented as a sum of seven
similar sub-sub-metrics and this can continue ad infinitum.

In §2.8.3 in (Batanov-Gaukhman, 2023e), each metric with the corresponding signature was conditionally assigned
a color. The additive superposition of metrics with different signatures essentially means that their geodesic lines
(i.e. color currents) are intertwined into bundles. The color dynamics of intertwined vacuum layers was described
in the papers (Batanov-Gaukhman, 2023d, 2023e).

In the theory developed here, the "electron" is infinite, but this infinity is discrete and self-similar (i.e. all layers of
the Am~vacuum are similar to each other), therefore they are accessible for the deepest study by the mathematical
methods of the Algebra of Signatures (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f).

Note that, in turn, the geometrized mathematical apparatus of the Algebra of Signatures is based on the Algorithms
for revealing the Great Name of the GOD Yud-Key-Vav-Key (TETRAGRAMATON) (Gaukhman, 2007).
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6 The raqiya of a free valence "electron" 2

The ragiya of "electron" is a complex curved region of 1-12-15-vacuum adjacent to the abyss-crack surrounding its
core (see Figures 1 and 8). The space of an average stable spherical vacuum formation (in particular, the "electron™)
is formed under the influence of two main factors.

First, the A-12-15-vacuum in the region of the "electron" space is stretched so much that its radial elongation to
infinity occurs due to an increase in the brokenness and twisting of the radial lines (see §1.2.2 and §5.2 in (Ba-
tanov-Gaukhman, 2023e)). In this case, in the region of the "electron" space, the radial subcont currents change
from laminar to turbulent flow (see Figure 18).

Secondly, the ragiya of the "electron" is perceived as a multilayer and multilevel spherical abyss-crack (i.e. a
spherical rupture of the A-12-1s-vacuum) between the "electron" core and its outer shell (Figure 8).

In 8§4.11 in (Batanov-Gaukhman, 2023f) it is shown that in the ragiya of "electron" there are 24 spherical layers
(among them 12 outer layers and 12 inner layers), which are connected with all spherical formations inside of
which the "electron" core is located, in this case with the "Universe" with a radius of 7, ~ 10%° cm, and with all
spherical formations that are inside the "electron" core, in this case with the proto-quark with a radius of
r7~ 102*cm.

Today, the radius of the observable "Universe" is a very large value (> ~ 10%° cm), therefore in §1.1 we neglected
the terms 2 /1 in the metrics (2) — (10). However, if we adhere to the opinion of cosmologists that the Universe
is gradually expanding, then it is possible that the radius of the "Universe" was small. In this case, a spherical
layer associated with the young "Universe" should have been noticeably manifested in the "electron's" ragiya. This
could affect the properties of the "electron". That is, it is necessary to keep in mind that the "electron" could
change during the evolution of the "Universe".

7 Rotation of the nucleus of a free valence "electron"

The core of any vacuum formation, including the core of an "electron”, rotates relative to an outside observer (i.e.,
an observer located on the side of its outer shell), see Figure 12. At the same time, for an observer located inside
the rotating core, this rotation may be practically unnoticeable.

Fig. 12: The rotation of the “electron” core has two components: 1) rotation around the instantaneous axis, and
2) chaotic change in the direction of the rotation axis itself
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Rotation of the core of a vacuum formation (in particular, the core of the "electron") is an extremely complex
phenomenon that requires a separate extensive study. In this paper, only possible directions of these studies are
outlined at the level of qualitative consideration.

First of all, we note that each point of each of the 4 transverse layers (n-subconts), which is on the periphery of
the core of the "electron" (i.e. at = r¢) should move with a speed close to the speed of light v, = v, = ¢ (see
Exs. (68) — (71)), despite the fact that the total speed of the subcont (74) is zero on average. Motion with the
speed of light is a condition for the existence of nsubconts on the edge of the abyss-crack (i.e. the spherical
boundary between the core and the outer shell of the "electron" (see Figures 1 and 8).

Such a rotational motion of the periphery of the core can be qualitatively described as follows. If the surface of
the "electron" core rotated like a solid sphere, then the speed of movement of points located on its equator v,
would be maximum, i.e. close to the speed of light (v..(" = ¢), while the speed of other points on this sphere would
be noticeably less (v,{”< ¢) (see Figure 13), and equal to zero at the poles.

In order for the speed of non-equatorial points on the surface of the core to also be close to the speed of light, in
addition to the rotational motion with the entire sphere as a whole, they must also participate in one or several
surface rotational motions: cyclones or anticyclones (see Figures 13) with an additional speed v,."), so that
v+ v, D= c.

qu

Fig. 13: Cyclones and anticyclones on the surface of the rotating core of a vacuum formation
(in particular, an “electron”) are similar to the circulation of air on the surface of a planet

On the surface of the sphere under consideration (see Figure 13) there are still two points: the "north" and "south"
poles, which do not participate in the rotational motion at all. But due to the boundary condition, they must also
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move at a speed close to the speed of light. Therefore, the axis of rotation of the "electron" core, passing through
these poles, must also constantly move chaotically (i.e. change direction) at the speed of light.

As a result of the superposition of several of the above-mentioned reasons, the points located in the peripheral
layer of the "electron" core must participate in an extremely complex surface motion, so that at the edge of the
abyss-crack each point moves with a speed close to the speed of light. In this case, the instantaneous axis of
rotation of the entire core as a whole must constantly shift along a practically chaotic trajectory (see Figures 8
and 13).

Initially, it is unknown in which direction the "electron" core rotates, but it is known that there are only two such
possibilities: "clockwise" and "counterclockwise", and the probability of any of these rotation directions is 2 (see
84). Due to the chaotic shift of the axis of rotation of the "electron”, for any given direction it coincides with this
direction part of the time, and the other equal part of the time this axis is oppositely directed. Therefore, the core
of a free, stationary “electron” has an intrinsic angular momentum for any direction that is, on average, equal to
Zero.

Different longitudinal and transverse layers of the "electron" core move with different speeds (68) — (71) depend-
ing on the distance from its center r. If on the periphery of the core all four transverse layers of the subcont on
average move practically only along the surface of a sphere with radius rs, then as they approach the inner
nucleolus the flow of the four intertwined layers of the subcont becomes more and more radial (see Figure 9).
However, near the inner nucleolus these currents again wind up on the core of the "proto-quark" with radius r;.

Therefore, the projections of the velocities of the transverse layers of the subcont onto the surfaces of spheres
with different radii s> r > r; will be different. Because of this, the longitudinal layers of the "electron" core are
also different (Figure 9).

We consider some aspects concerning the complex processes of subcont
rotation in the "electron" core.

Let the point M, located at a distance r from the center of the "electron"
core (i.e. between two ragiya r¢>r > r7), move around the instantaneous
axis of rotation with a linear velocity (see Figure 13) (Chelnokov, 2006)

V= OXT, (129)
where ® = e do/dt (130)
is angular velocity of rotation of the core (e is a unit vector directed along b{

the instantaneous axis of rotation).
Fig. 14: Determination of angular

Let the reference frame x1, x2, x3 (see Figure 14) remain motionless, and  Velocity of rotation (Chelnokov, 2006)

the system y1, y», y3 “chaotically” change its directions together with the
instantaneous axis of rotation of the core of the “electron”.

The coordinate axes of the reference and shifting reference frames in this case are related to each other by a
system of three linear equations

Ya= Bar(®) x1+ Boa(t) X2+ Bos(?) x3, (131)

where S (?) (a.k = 1,2,3) is direction cosines, which are random functions of time.
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Let's differentiate Egs. (131) (Chelnokov, 2006)
X1 X2 X3
3 B, = 0= (00 00 ,0)) (132
ﬁal(t) ﬁaz(t) ﬁaB(t)

where w,(?) is the instantaneous value of the projection of the angular velocity vector m(¢) onto the axes of the
reference frame xi, x;, x3 at time ¢.

Equating the coefficients at the unit vectors xi, from equation (132) we obtain a system of equations for the rates
of change of the direction cosines

dfaldt = fu1®= @rfus — w3, (133)
dPa/dt = fap® = @3fa1 — @1, (134)
dﬁaS/dt = ,Ba.“s‘ = wl,BaB_ Q)Z,Bal, (135)

which can be represented in matrix form (Chelnokov, 2006)

Ba1 0 —W3 W Ba1
Baz | = ( w3 0 —w1> (Baz)- (136)
Bas —W; W 0 Bas

Combining the three matrix equations into one, we obtain the Poisson matrix kinematic equation (Chelnokov,
2006)

Bi1 Bz B3 0 —w3(t)  w,(t) P11 B21 P31
Biz Bz B3z |=| ws(t) 0 —w,(t) (.812 B22 ,332>- (137)
Biz Bz Bz —w,(t)  wi(t) 0 Bz B2z PBss

which determines the displacement of point Malong a sphere with radius r.

According to expressions (68) — (71), the velocities of the intra-vacuum layers in the core of the “electron” relative
to the observer located inside the given core are equal to

v () = c(— rilr + PIré?)? - a-subcont velocity; (138)
V() = c(rq/r—Plre?)'?  — b-subcont velocity;

v r) = e(— rilr—Plre?)'?  — c-subcont velocity;

v0D(r) = c(ri/r+ PIre?)?  — d-subcont velocity.

However, relative to an observer located outside the rotating (relative to him) core of the “electron”, these ve-
locities are decomposed into radial v, (r) and tangential v, () components

V() = v, GO + v, FO (), (139)
V() = v CO() + v, COp), (140)
Vi) = v CAr) + v ), (141)
ViEUT) = v ) + v, ). (142)
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In this case, the tangential component of the velocity of each intra-vacuum layer can be estimated by the expression
Vie (r) = ()X, (143)
where s is the spatial isospin vector of the m+th intra-vacuum layer.

For example, the tangential component of the velocity of the a-subcont inside the nucleus of the "electron" is
approximately equal to

Vie () = (1) s, (144)
where s is the spatial isospin vector of the a-subcont with components (111):
sr(_a) =0, sé_a) =0, sé_a) = —%r sin 6. (145)

From expression (139), considering the components of the isospin vector (145), we obtain an estimate of the
modulus of the instantaneous value of the tangential component of the velocity of the a-subcont between two
ragiya of the core of the "electron" (rs>r> r7)

V) = Va1 osind [o1(F)? + 02(2)?]%, (146)
provided that on the periphery of the core with radius 7

Vi FN(r6)| = Vo 16 sin O [01(£)* + w2(2)*]=c, (147)
and in the region of the inner nucleolus with radius r; the condition is satisfied

Vi) = Vo r sin O [01(2)* + w2(2)*] = c. (148)

From expression (139) it follows that the radial component of the velocity of the a-subcont inside the nucleus of
the “electron” is approximately equal to

Ver CO) = v,CT) — v = (= ralr+ Pre?) V2 — Var sin O [on(2)? + wa(£)*]”. (149)

Based on the same analysis of the remaining expressions (140) — (142), the tangential and radial components of
the velocities of the h-subcont, c-subcont and d-subcont inside the core of the "electron" can be obtained.

Once again, we note that this section does not contain complete solutions to the problems posed. Here, only the
ways of describing the rotation of the core of a spherical vacuum formation, in particular the core of the "electron”,
are outlined. A separate, extensive study should be devoted to the rotation of various longitudinal and transverse
layers of the core of a spherical vacuum formation.

8 Connection with quantum mechanics. Chaotic behavior of the core of the "electron" and its inner
nucleolus

Before this paragraph, we considered the average stable metric-dynamic structure of a free valence "electron"
based on the methods of differential geometry and the mathematical apparatus of the Algebra of signature. It
turned out that in any stable spherical vacuum formation (in particular, in the "electron™), one can distinguish a
core and an inner nucleolus (see Figures 1 and 8).
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In reality, the vacuum, like an elastic-plastic continuous medium, constantly and everywhere chaotically trembles,
seethes and distorts. The stable metric-dynamic structure of any spherical vacuum formation (in particular, the
"electron") is only the result of simplification and averaging of complex vacuum fluctuations.

Chaotic vacuum deformations and curvatures need to be studied separately, but in this section, we will simplify the
task. Let's assume that the core of the “electron” (with a radius of 76 ~ 1073cm) and the inner nucleolus (with a radius
of r; ~ 107%* cm) are separate particles that, under the influence of complex vacuum fluctuations, wander chaotically
in the vicinity of a certain central point (i.e., the center of the stochastic system, Figure 15). This approach largely
coincides with the initial provisions of Nelson'’s stochastic quantum mechanics (Nelson, 1966; 1967; 1985).

™

B )

B O[]

( % \\_ \
o8 S
the core of

the "electron"

inner nucleolus

=
\

X_/

—— the center

\\—/ el ) of the
( stochastic

system

Fig. 15: Chaotically wandering core of the "electron”, inside which
the inner nucleolus wanders chaotically too

Chaotic vacuum deformations and curvatures should be studied separately, but in this section we will simplify the
task. We assume that the core of the "electron" (with a radius of ¢~ 1073cm) and the inner nucleolus (with a
radius of r7 ~ 1072* cm) are separate particles that, under the influence of complex vacuum fluctuations, wander
chaotically in the vicinity of a certain central point (i.e., the center of the stochastic system, Figure 15). This
approach largely coincides with the initial provisions of stochastic quantum mechanics by Edward Nelson (Nelson,
1966; 1967; 1985).

It is more correct to consider the joint chaotic behavior of the core of the "electron" and its inner nucleolus. That
is, to study the core of the “electron” as a chaotically wandering particle with a constantly chaotically shifting
geometric center (i.e. its center of inertia).

We deliberately avoid using the concept of the "center of mass" of a particle, since there is no mass in geometrized
vacuum physics. Stable vacuum formations are only stable deformations revealed from the seething vacuum by
averaging its fluctuations.

However, we will simplify the problem even more and consider the nucleus of the "electron" as a small structure-
less particle (with a radius rs ~10-'cm), which wanders chaotically in a much larger seething region of vacuum
with a characteristic size of the order of r, ~ 107%cm.

The chactic behavior of the nucleolus (i.e. the nucleus of the "proto-quark") inside the nucleus of the "electron”
has already been partially considered in §4.9 in (Batanov-Gaukhman, 2023f).
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In the same way as it was done in §4.9 in (Batanov-Gaukhman, 2023f) for the inner nucleolus, for the “electron” core
in the stationary case one can write the functional of the average efficiency of the stochastic system (144) in (Batanov-
Gaukhman, 2023f) (for a more detailed consideration of this random process see (Batanov-Gaukhman, 2024),

w = f_woo f_woo f_woo (—772—%1[}(35, v, 2)V2YP(x,y,2) + Y2 (x,y,2)[< u(x,y,2) > —< &(x,y,2) >]) dxdydz.

The condition for finding the extremal of this functional is the stationary Schrédinger-Euler-Poisson equation (Ba-
tanov-Gaukhman, 2024)

3n¢ (2Y(xy2) | 3*Y(xyz) | 0%P(xy,2)
_Tr{ Py 2 o }+ 2[<u(x,y,z) > —<e(xy,2z) >]Px,y,2z) =0, (150)
2 2
where 7, = ——,
) Trcor
here o, = N 0% + 0f + o (151)

is standard deviation of random 3-dimensional trajectory of chaotically wandering core of “electron” relative to
conditional center of the considered stochastic system (see Figure 15);

1
Trcor = 3 (Txcor + Tycor + Tzcor) (152)

is autocorrelation interval of the given 3-dimensional stationary random process.

In non-stationary cases the efficiency functional of the given stochastic system takes the form (see (59) in (Ba-
tanov-Gaukhman, 2024)
(153)

<5 >= 2177 10 (FEE OV + [< ul 0 > —< e o) SR D £ i L P 0 2D) dedydzdt.

To find the extremal of this functional is the time-dependent Schrédinger-Euler-Poisson equation (67) in (Batanov-
Gaukhman, 2024)

H WO g2y, i, )+ 2[< u(, ©) > — < e to) STp(E 0. (154)

In other words, the average behavior of a chaotically wandering core of an "electron" under certain conditions
(see (Batanov-Gaukhman, 2024)) is described by the equations of quantum mechanics. The stochastic Schro-
dinger-Euler-Poisson equations (150) and (154) coincide with the corresponding Schrddinger equations up to a
constant coefficient 7,

Moreover, taking into account in the article (Batanov-Gaukhman, 2024) two fundamental principles at once: "Min-
imum action" and "Maximum entropy" in one efficiency functional of the form (153), allows us to obtain for a
stochastic system of the "chaotically wandering particle" type not only differential equations of the Schrédinger
equation type, but also other stochastic equations depending on the initial conditions, for example, the self-diffu-
sion equation (see equation (73) in (Batanov-Gaukhman, 2024)), etc.

In general, the variational method proposed in the article (Batanov-Gaukhman, 2024) allows us to obtain equations
describing quantum and non-quantum stochastic systems of any scale (such as chaotically wandering core or

nuclei: "proto-quark”, "electron", "biological cell", "planet", "star", "galaxy", etc.). In this case, there are no

58



Avances en Ciencias e Ingenieria - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman

deviations from ordinary empirical expectations and classical logic, and it is also possible to do without involving
hypothetical de Broglie waves that are not observed in experiments.

Without involving the hypothesis of de Broglie waves, it is also possible to explain the results of an experiment on
the diffraction of microparticles (in particular, electrons) on a crystal.

Using the usual methods of probability theory and the laws of geometric optics, the author obtained Formula (2.2)
in (Batanov-Gaukhman, 2021)

[aZ b2 ,2 2
1 cosz(nnl)—cos(rml)cos( ad+2b 12/71) cos(n’n1+ ad;zblz/n>—1

d(aybg—al,by)+cy(bag—aby,)

D v, 19’ - _ vhw— 0wy v w w 155

W w/9,7) 22l nng, \2_( [aZ+b2 ? mny 22, \ d?a?+p? o (159)

( /lz) - d2 l2/n /l2+ d2 /n
where
a = cosv cosw + cosd cosy; b = cosv sinw + cosd siny; d = sinv+sind; a,’=—sinv cosw;
b,’=—sinvsinw; ¢,’=cosV; e =—cosysinw; by’= cosv cosw;
12(m?n2-6)

n=-—_——_——, (156)

6T 2T cors

here

[, is the thickness of one reflective layer (i.e. horizontal atomic plane) of the crystal (see Figure 2.1 in (Batanov-
Gaukhman, 2021));

L= L, is the depth of the multilayer surface of the single crystal, effectively participating in the elastic scattering
of electrons;

n1 is the number of uneven layers of the single crystal (sinusoidal type), lying in the interval [0, /.];

reor 1S the autocorrelation radius of one uneven layer of the crystal of the sinusoidal type. This autocorrelation
radius is approximately equal to the average radius of curvature of the sinusoidal irregularities of one layer of
the crystal;

9,y are the angles that define the direction of motion of microparticles (in particular, electrons) incident on the
surface of the crystal (see Figure 1.2 in (Batanov-Gaukhman, 2021));

v,w are angles that define the direction of movement of microparticles (in particular, electrons) reflected from the
surface of the crystal towards the detector (see Figure 1.2 in (Batanov-Gaukhman, 2021)).

Calculations using formula (155) allow us to obtain ring-shaped scattering diagrams of microparticles (in particular,
electrons) on a crystal (see Figure 16), corresponding to experimental electronograms.

a)for: $=45° y=0°, ni=64, 6) for: 3=45° y=0°, ni=65,
L1=10"""em, 7eor=6 10 cm L1=10"cm, rco=6-10" cm

Fig. 16: Volume diagrams of elastic scattering of electrons on a multilayer surface of a single crystal, calculated
using formula (155) for different values of the parameters 9, /1, n1 and recor
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The number of crystal layers n,, which are penetrated by incident microparticles (in particular, electrons), depends
on their velocity n; = f (v). The results of calculations using formula (155) as a function of n;, these calculations
are in good agreement with the results of the experiment of K. Davisson and L. Germer on the diffraction of
electrons on a nickel crystal (Davisson & Germer, 1928).

The greatest surprise in quantum physics is caused by the diffraction
of electrons on two slits. Richard Feynman said: —"This phenomenon is
absolutely, absolutely impossible to explain in a classical way. In this
phenomenon lies the very essence of quantum mechanics."

Indeed, if an electron is a point particle, then no reasonable explana-
tion can be given for this experiment.

However, if we consider the "electron" as a stable, on average, spher-
ical vacuum formation in which we can distinguish a core and an outer
shell (see Figures 1 and 4), then the mysterious charm surrounding
this double-slit experiment (see Figure 17) can easily dissipate. This :
phenomenon can be explained by wave disturbances of the outer shell g, 17: Electron diffraction on two slits
of the "electron", which simultaneously penetrates both slits, while the

core of this "electron" passes through only one of them.

Much research is still needed to describe numerous quantum effects using the methods of stochastic quantum
mechanics and fully geometrized vacuum physics, but it is already possible to confidently assert that the phenom-
ena of the microworld are fundamentally no different from random processes in the macroworld.

There is much to suggest that Einstein's rejection of quantum indeterminism was not unfounded. However, weak-
ened determinism is not due to the restriction of the rigidity of administration and censorship by the "hypothetical
imperative", but to the imposition of conditions of energetic optimality on an acceptable level of freedom. Weak-
ened determinism is based on the extremity of the efficiency functional, which unites both fundamental principles:
"Minimum action" (i.e. energetic limitation and reasonable expediency) with "Maximum entropy" (i.e. accessible
freedom, within the framework of recognized necessity).

9 Free "positron”

If in all the previous paragraphs we replace the set of metrics (1) with the signature (+ — — =), defining the
averaged stable metric-dynamic state of a free resting valence "electron", with the set of antipodal metrics (11)
with the signature (- + + +), and also replace the terms:

- "outer side of the A-12,-15-vacuum" with "inner side of the A-12-15-vacuum";

- "subcont" with "antisubcont";

- "convexity" with "concavity";

- the notations ds\* ™7, ds{", 1Y, g7, vg?, ES,a P, 457 with ds{ ™ ,ds{7, 17,950,057, B, a 0,40,
then we obtain a completely analogous, but completely opposite metric-dynamic model of an on average stable
spherical vacuum formation — a free resting valence “positron”.

If we add the set of metrics (1) to the set of antipodal metrics (11), we get zero. That is, the "electron" and
"positron" completely compensate each other's manifestations.
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10 Quasi-stationary interactions of "particles" and "antiparticles"
10.1 Simplified quasi-stationary "electron” - "positron” interaction

There are no separately existing "electrons" and "positrons". Considering these stable vacuum formations sepa-
rately is possible only within the framework of a simplified mathematical model.

If the cores of the "electron" and "positron" are separated from each other, then subcont - antisubcont currents

constantly circulate between the ragiya of these vacuum formations (see Figure 18).

The “electron” core The “positron” core

circulation of a,b-antisubcont

circulation of a,b-subcont

Fig. 18: Schematic representation of the average circulation of g,4-subcont and g, b-antisubcont
between the “electron” and “positron” raqiyas

In §2.2 it was shown that in the outer shell of the “electron” the asubcont flows in the form of thin currents
twisted in spirals around all radial directions to the “electron’s” ragiya (i.e. spherical abyss-crack) (see Figures 5
and 6), and the b-subcont flows out from the “electron’s” ragiya in the form of thin currents in all directions along
a multitude of counter-spirals.

As a result, the acceleration vector of the subcont (or the geometrized vector of the eclectic intensity of the
subcont) in the outer shell of the “electron” has components (59)

2
(+) E(+ab) Cc°Tg _, (+) E(+ab) 0’ ((x-l(;)) Eé;ab) 0. (157)
2r2 [1-8

In the outer shell of the "positron" similar but opposite processes occur: the g-antisubcont flows in the form of
thin currents from all sides to the "positron" ragiya along a multitude of spirals, and the b-antisubcont flows out
from the spherical abyss-crack (i.e., ragiya) of the "positron" in the form of thin currents in all directions along a
multitude of counterspirals. As a result, the acceleration vector of the antisubcont (or the geometrized vector of
the eclectic tension of the antisubcont) in the outer shell of the "positron" has the components

( ) (-ab) _ _ ¢’ ( ) (-ab) _ o) = pt-ab) _
=E,, —Grz, =E, =0, Ay = Emp = 0. (158)
212 }1—r—§

Earlier we assumed that in the outer shells of the free "electron” and "positron" these subcont and antisubcont
currents and countercurrents began and ended at the periphery of the Universe (see Figures 6). Now we will
consider that some of these currents and countercurrents circulate between the "particle" and "antiparticle" ragiyas
(in particular, between the "electron" and "positron" ragiyas, see Figures 18).

61



Avances en Ciencias e Ingenieria - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman

In this case, between the "electron" and "positron" ragiyas there are four intertwined subcont-antisubcont currents
with accelerations of the form (55) and (56)

(+a) c?rg
I a = — a-subcont; (159)
)
2
H a§+b) =T — b-subcont, (160)
212 /1+T76
(-a) c?rg : .
\'} a = — g-antisubcont; (161)
)
H' al™? = — bantisubcont. (162)

. c*rg
T
2r2 / 1+76
o
There is also a fifth [i (kots)] fundamentally different acceleration, caused by the phase shift of the subcont-antisubcont currents between the

"particle" and "antiparticle" nuclei. This acceleration is equivalent to the gravitational interaction between the "electron” and "positron"” core,
which is planned to be considered separately in the following articles of this project.

The twisting of the four subcont — antisubcont currents can be explained using a four-sided Mobius strip. In this
case, each of the four vacuum currents with accelerations (159) — (162) flows along its side of the four-sided
Mobius strip, transforming into each other at the inflection points located in the “electron” and “positron” ragiyas.

Thus, the “electron” attracts the “positron” with acceleration

2

al#*9 = L a1 4 o024 02 02 (163
2r2 (1— :—g>

Similarly, the "positron" attracts the "electron" with the same acceleration (since the action is equal to the reaction)

2

a(é+e) _ i\/aﬁ—a)z +a£—b)2 +a£+a)2 +a§+b)2 —_ T

T Va / 2\
212 (1—T—§>

The total radial acceleration with which the "electron" and "positron"
are attracted to each other on average is i

_ - ~ 2
aﬁe,e) = a£e+€) + a£€+e)= T (163)

) / ‘
2
Te / \
T‘Z (l_r_2> \ )

where, in this case, r is the distance between the centers of the :

“electron” and “positron”. Fig. 19: Graph of function (163) for the con-
ventionally accepted ¢ = r¢ = 1. This function

The graph of function (163) is shown in Figure 19. This function de-  determines the acceleration of the approach

termines the acceleration of the convergence of the core of the “elec-  of the cores of the “electron” and “positron”

tron” and the core of the “positron” depending on the distance be-  depending on the distance between their

tween their centers. centers.
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For » » r¢ Ex. (163) is simplified
= 2

a§€+6) — Cr%, (164)

and corresponds to the strength of the Coulomb interaction between an electron and a positron in classical elec-

trostatics

. 2
Fr(e+e) _ e (165)

ameyr2’

Comparing Ex. (164) and (165), we find the correspondence

e?

= c?ry , where m, is the rest mass of the electron. (166)

ATTEGM,
Based on relation (166), we can estimate the radius of the core of the “electron”

e?

IR

Te = 2.8179403267 x 10™13cm, (167)

2
4TTEgC2 My

in modern physics, this value is usually called the "classical radius of the electron" or the "Lorentz radius" or the
"Thomson scattering length".

10.2 Simplified quasi-stationary “electron” — “electron” interaction

As shown in Figure 20, between the “electron” 1 and “electron” 2 only subcont currents and countercurrents
circulate (i.e. only subcont exchange process take place), the antisubcont does not circulate between them.

The “electron 17 core The “electron 2" core

\) :Circulationof&l};subcont @
7 =

Fig. 20: Schematic representation of the average circulation of the asubcont
and b-subcont between the ragiyas of the “electron 1” and “electron 2"

As shown in §2, the ai-subcont with acceleration (55) flows to the ragiya of the “electron1” and the bi-subcont
with acceleration (56) flows away from it (see Figure 20). The total radial component of the acceleration of the
subcont in the outer shell of the “electron 1”, repulsive the core of the “electron 2”, is on average equal to (58)

2

a(+a1b1) =%\/a£+a1)2+a£+b1)2 -t (168)

rl 2
2r2 [1-%
-
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In this case, the bi-subcont, which flows away from the ragiya of "electron 1", flows into the ragiya of "electron
2" in the form of an a-subcont and flows out of it in the form of a £2-subcont (see Figure 20). As a result, "electron
2" repulsive the core of the “electron 2” with a similar acceleration

2
q(+a2b2) :%\/a£+a2)2+a£+b2)2 e (169)

T2 2
2r2 [1-2%
Thus, “electron 1" and “electron 2" on average repel each other with a common acceleration

2
a£e1+ez) — afﬂ;—albl) + aT(;aZbZ) — &) (170)

2
2 _Te
. <1 )

where, in this case, r is the distance between the centers of “electron 1” and “electron 2".
For r » rs, Ex. (170) is simplified

(exte;) _ c216 (171)

aT‘ TZ ’
and corresponds to the force of Coulomb repulsion of two electrons from each other (165).

A similar consideration of the "positron 1" — "positron 2" interaction leads to the same result

2
a(el+e2) _ a(+a1b1) + a(+a2b2) — ¢. (172)

T - Y%r 2 2
7‘2 1— r_ﬁ
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For the case under consideration, it would be correct to solve Einstein's vacuum equations, taking into account
the vacuum stresses that arise during the interactions of the "particles". However, this is a difficult task. In addition,
in the simplified model proposed here, we assumed that at each fixed moment of time, the interaction between
two "particles" is quasi-stationary. That is, we conditionally assume that the "electron" and "positron" or "electron
1" and "electron 2" in a Coulomb-type interaction move so slowly that at each moment they can be considered as
if motionless. In fact, the shape and structure of the "electron" and "positron" change during the movement (this
is planned to be shown in the next article of this series). These approximations are justified by the fact that they
bring clarity to the geometric nature of electric charge (see §2.2.2) and provide an explanation of Coulomb's law
based on simplified metric-dynamic models of the valence "electron" and valence "positron".

CONCLUSION
"The electron is as inexhaustible as the atom,
nature is infinite. "
V.I. Lenin, "Materialism and Empiriocriticism", Chapter V

In this article (i.e. in Part 7 of "Geometrized Physics of Vacuum Based on the Algebra of Signature") averaged
metric-dynamic models of only two mutually opposite stable spherical vacuum formations are considered: a free
"electron” (i.e. a conditional "convexity" of the 1-12,-15-vacuum) and a free "positron"” (i.e. a conditional "concavity"
of the A-12,-15-vacuum).

The study of simplified metric-dynamic models of the "electron" and "positron" allowed us to demonstrate the use
of the mathematical apparatus and methodology of geometrized vacuum physics, which includes (Batanov-
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Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f): vacuum differential geometry (i.e., the nullified general
theory of relativity), the Algebra of signature (i.e., the metric knot topology), and the effective probability theory
(i.e., stochastic quantum mechanics). These mathematical tools are suitable for a detailed study of all stable and
unstable spherical vacuum formations presented in §4 of (Batanov-Gaukhman, 2023f): "quarks", "leptons", "bar-

yons", "mesons" and "bosons", "atoms" and "molecules".

In addition, the "electron" and "positron" are artificially extracted from the general hierarchical cosmological model
presented in §§1-3 in (Batanov-Gaukhman, 2023f). This is done by leaving for consideration only those terms
from the hierarchical sets of metrics (23) — (27) and (28) — (32) in (Batanov-Gaukhman, 2023f) that contain radii
rs ~ 10713 cm (corresponding to the size of the nucleus of the "electron" and "positron™). In this hierarchical
cosmological model, all spherical vacuum formations of different scales nested in one another (like matryoshka
dolls, see Figure 1 in (Batanov-Gaukhman, 2023f)) are similar to one another. Therefore, if in all equations and
expressions of this article instead of radii from the hierarchical sequence (44a) in (Batanov-Gaukhman, 2023f):

r2~ 10%° cm is radius corresponding to the size of the observable Universe,
re~ 1073 cm is radius corresponding to the size of the “electron” core,
r7~ 1072*cm is radius corresponding to the size of the “proto-quark” core

substitute from the same hierarchy of radii, for example:

r2~ 10%° cm is radius corresponding to the size of the observable Universe,
rq~ 108 cm is radius corresponding to the size of the core of a planet or star,
re~ 1073 cm radius corresponding to the size of the core of the “electron”,

then we obtain metric-dynamic models of “planets”;
or, for example:

r2~ 10 cm is radius corresponding to the size of the observable Universe,
r3~ 10'° cm is the radius corresponding to the size of the core of the galaxy,

ra~ 108 cm is radius corresponding to the size of the core of a planet or star,
then we get metric-dynamic models of "galaxies", etc.

On closer examination, "electron" and "positron" are not mathematical points, as they are treated in classical
electrodynamics and in @ number of quantum theories. "Electron" and "positron" are infinitely complex objects
occupying the entire Universe. Four spherical regions can be distinguished in them: the outer shell, the shell, the
nucleus and the inner nucleolus, which require separate extensive studies.

No matter how much we study "electron" and "positron" as, on average, stable vacuum formations, they will still
remain unknown. This article considers only some aspects related to free resting "electron" and "positron" and
their interaction with each other at a simplified level of quasi-static vacuum electrostatics.

Many questions related to the uniform and accelerated motion of the "electron" and "positron", their state in the
composition of an atom (see ranking expressions (105) — (110) in (Batanov-Gaukhman, 2023f)), their interaction
with high-frequency and low-frequency "photons" and other "bosons", questions of their annihilation, the nature
of electric current, etc. were left outside the scope of consideration.
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Among the positive results of this article, it can be noted that within the framework of the theory developed here,
the problem of the connection between the deterministic vacuum theory of relativity and quantum mechanics is
easily solved, and the existence of the so-called "mass gap" is logically substantiated.

Vacuum is similar to an elastic-plastic continuous medium (trembling jelly), which constantly and everywhere
chaotically seethes, bizarrely bends and twists into spirals, topological knots are tied and untied in it, etc. Einstein's
vacuum equations are, in essence, conservation laws, i.e. conditions for ensuring the stability of average local and
global vacuum formations. Metric-solutions of these vacuum equations allow us to obtain average (i.e. simplified)
metric-dynamic models (mental frameworks) of stable spherical vacuum formations. However, the averaged stable
structure of "particles" is illusory — it is only a mental construction, i.e. the result of the ability of our thinking to
simplify infinitely complex situations.

In addition, the nuclei of spherical vacuum formations, extracted from the seething chaos by averaging and sim-
plification, themselves move chaotically as structureless particles (corpuscles) under the influence of the seething
vacuum medium (see Figure 26). However, the arbitrariness of the behavior of a randomly wandering nucleus
(corpuscle) is only apparent. When averaging the chaotic behavior of a nucleus, it turns out that it obeys the laws
of effective probability, which are a compromise between two opposite global aspirations of any stochastic system
for "Minimum Action" (i.e., for energy conservation) and for "Maximum Entropy" (i.e., for ultimate freedom). The
equations of stochastic quantum mechanics, describing the average behavior of a chaotically wandering particle,
turned out to be conditions for the extremum of the averaged efficiency functional (see (Batanov-Gaukhman,
2024)).

It may seem that deterministic Einstein vacuum equations and stochastic diffusion equations and Schrodinger
equations relate to different laws of nature. In fact, they all have their roots in a deep understanding of the
dichotomy of "Order and Chaos" and in the philosophical definition of "Freedom as cognized necessity" (Baruch
Spinoza, Georg Hegel). Einstein vacuum equations and the equations of stochastic mechanics are different forms
of manifestation of the extremality of one efficiency functional. If we neglect the chaotic component of the parti-
cle's motion (i.e. if we consider only the average trajectory of its motion), then the search for the extremality of
the efficiency functional of such a stochastic system can move on to the Lagrangian formalism of classical me-
chanics (see expression (18a) in (Batanov-Gaukhman, 2024)).

Thus, in the geometrized vacuum physics developed here, random fluctuations are first eliminated by averaging
in order to reveal the average structure of stable vacuum formations. Then, chaotic fluctuations are returned to
consideration as:

- dynamic chaos due to the study of the average behavior of chaotically wandering nuclei (corpuscles) of, on
average, stable spherical vacuum formations;

- topological chaos due to the study of nodal superpositions of metrics with 16 different signatures (see §1);

- relic chaos due to the study of fluctuations of the vacuum itself.

Within the framework of the proposed "geometrized vacuum physics" there are no contradictions between the
general theory of relativity, probability theory and quantum mechanics.

In the "geometized physics of vacuum" the concept of "mass" is absent. As has been repeatedly noted in articles
(Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f), the heuristically introduced physical quantity
"mass" with the dimension of kilogram (which corresponds to the weight of one liter of purified water at a tem-
perature of 4 °C and normal atmospheric pressure at the latitude and longitude of Paris) is convenient for applied
problems. But this quantity is completely impossible to introduce into a completely geometrized theory.

In the theory developed here, the subject of study is stable and unstable spherical vacuum formations (i.e. local and
global averaged deformations of the corpuscular type vacuum) of various scales. In this case, such concepts as
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charge, mass, spin, color and other characteristics of particles in the fully geometrized physics developed here are
expressed through the properties of 3-dimensional space illuminated by light rays (i.e. through the properties of the
Ammvacuum): the speed of light in a vacuum, the radius of the "particle" core, the signatures of the metric, etc.

Although the terminology and basic concepts in “geometrized vacuum physics” differ from modern quantum field
theory, one can try to answer one of the “Millennium Prize Problems”, which is formulated as “The Yang—Mills
existence and mass gap problem”.

First, we note that Einstein's vacuum equations, considering all 16 signatures,

FH++4H) +H++-) (++2)° F+-HF

===+ (+++)° —-+D*° (+-H"
+-——4)° (++--) F—-——)" -+ (173)
(=42 (+-+-)P +-)? (---)

is a special case of the Yang-Mills equations (Krivonosov & Lukyanov, 2009).

Recall that the Yang-Mills equations are a system of partial differential equations for a connection on a vector
bundle. They arise as the Euler-Lagrange equations from the Yang-Mills action functional.

Secondly, within the framework of the fully geometrized theory developed here, the problem of the existence of
a mass gap is easily solved.

Secondly, within the framework of the fully geometrized theory developed here, the problem of the existence of
a mass gap can be easily solved.

Recall that in quantum field theory the mass gap is the difference in energy between the vacuum and the next
highest energy state. The vacuum energy is zero by definition, and if we assume that all energy states can be
treated as particles in plane waves, the mass gap is equal to the mass of the lightest particle (i.e., the electron).

In previous articles (Batanov-Gaukhman, 2023d, 2023e, 2023f) it was shown that Einstein vacuum equations (140)
in (Batanov-Gaukhman, 2023e)

Rix £ Ag gix = 0, (174)
have flat solutions (10) and (20)

+==-)2 _ 24,2 4.2 _ .2 2 .2 2
dsg = c4dt® —dr* —r=(dO* + sin“ 0 d¢~),
dsSH% = — c2de? + dr? + r2(d6? + sin? 6 dp?),
which determines the stable metric-dynamic state of the undeformed section of the two-sided A-12,-15-vacuum.
The next stable, but already deformed, state of the outer side of the A-12-15-vacuum, i.e. (subcont), is determined
by the set of metric-solutions (2) — (5) and (6) — (9) of the same vacuum equation, which allow us to construct
an averaged metric-dynamic model of the "electron". Similarly, the stable deformed state of the inner side of the

A-12,-15-vacuum (i.e. antisubcont) is determined by the set of metric-solutions (12) — (15) and (16) — (19) of the
same vacuum equation (174), which allow us to construct an averaged metric-dynamic model of the "positron".
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Here we are not talking about the difference in the rest masses (or rather energies) of the vacuum and the electron,
but about the two nearest stable states of the A-12,-15-vacuum. We call the first stable undeformed state of a section
of the A-12-15-vacuum "emptiness" (or rather, the Einstein void), and we call the next simplest stable deformed
state of one side of the A-12-15-vacuum "electron". The difference between these two average stable states of the
A-12,-15-vacuum, caused by the internal discrete properties of the Einstein vacuum equation. This is the easily
explainable reason for the existence of the so-called "mass gap" in the Yang-Mills theory.

However, the internal discreteness of Einstein vacuum equations does not lie in the fact that they are quantized
by the methods of quantum field theory, but in the fact that the solutions of these levels are discrete in nature,
both from the point of view of the hierarchical discontinuity of the sizes of the cores of stable vacuum formations,
and from the point of view of the countable classification of topological nodes, associated with the limitedness of
the discrete set of 16 possible signatures (173).

In conclusion, it should be noted that it is necessary to distinguish between living and non-living "electrons" and
"positrons". They differ in that in living vacuum formations, what we perceive as chaos is a complex genetic code
(i.e. a closed information flow). Living "electrons" and "positrons" are male and female (Fermi-bacteria or viruses).
Non-living “electrons” and “positrons” are only compacted vacuum shells, revealed from senseless chaos by means
of averaging.

The article is accompanied by fractal illustrations. Some fractals convey the essence of natural manifestations in an
amazing way. Sometimes it is necessary to write several pages of text to explain what a fractal conveys in one image.

Unfortunately, it is almost impossible to find the authors of these masterpieces on the Internet, so the fractals are
provided without indicating their creators. We compensate for this by expressing heartfelt gratitude to these
devotees of beauty, starting with Gaston Maurice Julia and Benoit Mandelbrot, with the hope that their efforts will
serve to expand our knowledge of the bottomless depths of reality around us.
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