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       ABSTRACT 

This article is the seventh part of the scientific project under the general title "Geometrized Vacuum Physics” Based on the 
Algebra of Signature" (Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f). In this article, the metric-dynamic 
model of two simplest mutually opposite stable spherical vacuum formations is considered - "electron" and "positron". These 
stable vacuum formations are an integral part of the hierarchical cosmological model proposed in the previous article (Batanov-
Gaukhman, 2023f). The methods of geometrized vacuum physics and the mathematical apparatus of the Algebra of Signature 
used in this article to study the metric-dynamic model of "electron" and "positron" are suitable for studying all other more 
complex stable vacuum formations of the same scale: "quarks", "nucleons", "mesons", "atoms" and "molecules", etc., as well 
as all stable vacuum formations of any scale, for example, "planets", "stars" and "galaxies". This article examines issues related 
to deformations and accelerated flows of various vacuum layers inside the "electron" and "positron". Paths for the development 
of geometrized vacuum electrostatics are outlined. Some aspects of the "electron"-"photon", "electron"-"positron" and "elec-
tron"-"electron" interactions are considered. The "electron" and "positron" are infinitely complex vacuum formations, but the 
algorithms and mathematical techniques of the Algebra of signature proposed in the article can permanently push back dark-
ness into the abyss of the unknown, gradually transforming transcendence into immanence. 
 
 

RESUMEN 
Este artículo es la séptima parte del proyecto científico titulado "Física del vacío geometrizada” basada en el álgebra de signa-
turas" (Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f). En este artículo se considera el modelo métrico-
dinámico de dos formaciones de vacío esféricas estables mutuamente opuestas más simples: "electrón" y "positrón". Estas 
formaciones de vacío estables son una parte integral del modelo cosmológico jerárquico propuesto en el artículo anterior 
(Batanov-Gaukhman, 2023f). Los métodos de física del vacío geometrizada y el aparato matemático del álgebra de signaturas 
utilizados en este artículo para estudiar el modelo métrico-dinámico del "electrón" y el "positrón" son adecuados para estudiar 
todas las demás formaciones de vacío estables más complejas de la misma escala: "quarks", "nucleones", "mesones", "átomos" 
y "moléculas", etc., así como todas las formaciones de vacío estables de cualquier escala, por ejemplo, "planetas", "estrellas" 
y "galaxias". En este artículo se examinan cuestiones relacionadas con las deformaciones y los flujos acelerados de varias 
capas de vacío en el interior del "electrón" y del "positrón". Se describen los caminos para el desarrollo de la electrostática de 
vacío geometrizada. Se consideran algunos aspectos de las interacciones "electrón"-"fotón", "electrón"-"positrón" y "electrón"-
"electrón". El "electrón" y el "positrón" son formaciones de vacío infinitamente complejas, pero los algoritmos y las técnicas 
matemáticas del Álgebra de signaturas propuestas en el artículo pueden permitir empujar permanentemente la oscuridad hacia 
el abismo de lo desconocido, transformando gradualmente la trascendencia en inmanencia. 
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BACKGROUND AND INTRODUCTION 
 

This paper is the seventh in a series of articles under the general title "Geometrized Vacuum Physics Based on the 

Algebra of Signature". The previous six articles are listed in the bibliography (Batanov-Gaukhman, 2023a; 2023b; 

2023c; 2023d; 2023e; 2023f). 
 

The paper (Batanov-Gaukhman, 2023f) presented a hierarchical cosmological model, within the framework of 
which the Universe is filled with an uncountable number of spherical vacuum formations (corpuscles) of various 

scales, which are nested inside each other like Russian dolls (see Figure 10 in (Batanov-Gaukhman, 2023f)). 
Within the framework of the hierarchical cosmological model (Batanov-Gaukhman, 2023f), all spherical vacuum 

formations (corpuscles) of the universal, galactic, stellar-planetary, microscopic (i.e. cellular-bacterial), picoscopic 

(i.e. atomic-molecular), etc. scales are arranged practically identically. Therefore, in the article (Batanov-Gau-
khman, 2023f), only the level of elementary particles is considered in detail. In particular, metric-dynamic models 

of sixteen types of colored "quarks" (see Table 1 and the set of metrics (71) in (Batanov-Gaukhman, 2023f)) and 
colored photons were obtained, on the basis of which completely geometrized representations of practically all 

elements of the Standard Model of elementary particles were constructed: "leptons", "mesons", "baryons", "bos-

ons" (see §4 in (Batanov-Gaukhman, 2023f)), as well as "atoms" and "molecules". 
 

Let’s recall that we have agreed to put the names of metric-dynamic models of "particles" of all scales in quotation 
marks, because, firstly, these are not exactly particles, and, secondly, these geometrized models only partially 
correspond to modern ideas about these elements of matter. 
 

In the article (Batanov-Gaukhman, 2023f), only sets of metrics-solutions of Einstein's vacuum equations are given, 

which make up the metric-dynamic models of spherical vacuum formations ("corpuscles"), however, how to ex-
tract information about the structure of these "corpuscles" from these sets of metrics based on the methods of 

geometrized vacuum physics and the Algebra of Signature was not presented. 
 

In this article, as an example, we will study in detail the structure and interaction of only the "electron" and 
"positron". The structure and interaction of all other spherical vacuum formations (“corpuscles”) of any scale 

(“quarks”, “planets”, “stars”, “galaxies”, etc.) are described similarly, and are partly planned to be considered in 

subsequent articles of this project. 
 

Let’s recall that the metric-dynamic models of a free “electron” and a free “positron” are determined respectively 
by sets of metrics (50) and (60) taking into account §4.12 in (Batanov-Gaukhman, 2023f) 

 

                                                               "ELECTRON"                                                          (1) 
On average, spherical stable "convex free, valence   

" multilayer spherical 
curvature of -12,-15-vacuum with signature (+ – – –), consisting of: 

 

                                            I      The outer shell of free valence "electron" 
in the interval [r2, r6] (see Figure 1                                                                     

    I                            𝑑𝑠1
(+−−−)2

= (1 −
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1−
𝑟6
𝑟
+
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                        (2)         

    H                            𝑑𝑠2
(+−−−)2

= (1 +
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟6
𝑟
−
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                       (3)           

    V                            𝑑𝑠3
(+−−−)2

= (1 −
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1−
𝑟6
𝑟
−
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                       (4)          

    H′                            𝑑𝑠4
(+−−−)2

= (1 +
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟6
𝑟
+
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                      (5)    
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                                              H      The core of free valence "electron" 
in the interval [r6, 𝑟7] (Figure 1) 

       I                      𝑑𝑠1
(+−−−)2

= −(1 −
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

−(1− 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                      (6)         

      H                      𝑑𝑠2
(+−−−)2

= −(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1+ 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                     (7)       

      V                      𝑑𝑠3
(+−−−)2

= −(1 −
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1− 
𝑟7
𝑟
 −
𝑟2

 𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                     (8)        

      H′                     𝑑𝑠4
(+−−−)2

= −(1 +
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1 + 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                    (9)       

   

                                              i       The substrate of the “electron”  
in the interval [0, ] 

       i                                      𝑑𝑠5
(+−−−)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                  (10)     

  

   
 

Fig. 1: Illustration of a fully geometrized model of a stable spherical vacuum formation 
(in particular, a free “electron”) with four clearly defined regions: 

The core of the "electron" is the central closed spherical region of -12,-15-vacuum; 
The outer shell of the "electron" is the region of -12,-15-vacuum surrounding the core of the "electron"; 

The raqiya of the "electron" is a layer spherical abyss-crack separating the core of the "electron" from its outer shell. 
The inner nucleolus is a small closed spherical region of -12,-15-vacuum inside the core of the "electron"; 

The substrate of the "electron" is the original undeformed region of vacuum in which the "electron" is located. This is a kind of 
memory of what this vacuum region was like before it was deformed and took on the stable form of an “electron” 
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                                                          "POSITRON"                                                     (11) 
free, valence     

On average, spherical stable " concave " multilayer spherical 

curvature of -12,-15-vacuum with signature (+ – – –), consisting of: 

                                       

                                            V     The outer shell of free valence "positron" 
in the interval [r2, r6] (see Figure 1)   

       I                       𝑑𝑠1
(−+++)2

= −(1 +
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

−(1− 
𝑟6
𝑟
 + 
𝑟2

𝑟2
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                    (12) 

       H                      𝑑𝑠2
(−+++)2

= −(1 −
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

− (1 + 
𝑟6
𝑟
 − 
𝑟2

𝑟2
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                   (13) 

       V                       𝑑𝑠3
(−+++)2

= −(1 +
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

− (1 − 
𝑟6
𝑟
 − 
𝑟2

𝑟2
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                  (14) 

       H′                      𝑑𝑠4
(−+++)2

= −(1 −
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

− (1 + 
𝑟6
𝑟
 + 
𝑟2

𝑟2
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                  (15) 

 

                                            H′       The core of free valence " positron " 
in the interval [r6, 𝑟7] (Figure 1) 

        I                       𝑑𝑠1
(−+++)2

= −(1 −
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 − 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                   (16)     

       H                       𝑑𝑠2
(−+++)2

= −(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1+ 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                    (17)     

       V                       𝑑𝑠3
(−+++)2

= −(1 −
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1− 
𝑟7 

𝑟
 − 
𝑟2

𝑟6
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                   (18)    

       H′                      𝑑𝑠4
(−+++)2

= −(1 +
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                   (19)  

 

                                          i          The substrate of the “positron”  
in the interval [0, ] 

        i                                 𝑑𝑠5
(−+++)2

= − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                    (20)   

 
 

where in metrics (2) – (9) and (12) – (19), according to hierarchy (44a) in (Batanov-Gaukhman, 2023f), pre-

sumably: 

r2 ~ 1029   cm is the approximate radius of the observable Universe; 

r6 ~ 10–13 cm is the approximate radius of the radius of the core of the “electron”; 

r7 ~ 10–24 cm is the approximate radius of the core of the “proto-quark”. 

 

The radii r2, r6, r7, taken from the hierarchy (44a) in (Batanov-Gaukhman, 2023f) are approximate and can be 

refined as further research progresses. These radii do not have a significant effect on the structure of the valence 

"electron" and valence "positron" if r2 » r6 » r7. 

 

As already noted in (Batanov-Gaukhman, 2023f), the sets of metrics (1) and (11) differ only in signature. That is, 

the "electron" and "positron" are completely identical, but antipodal (mutually opposite) copies of each other. If 

the "electron" is conventionally called a "convex" stable spherical -12,-15-vacuum formation (Figure 1), then the 

"positron" is exactly the same conventionally "concave" stable spherical -12,-15-vacuum formation (negative of 

Figure 1). Recall that the concept of m,n-vacuum was introduced in §2.1 in (Batanov-Gaukhman, 2023a). Such a 
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mutually opposite pair of -12,-15-vacuum formations fully corresponds to the condition of vacuum balance (see the 

Introduction in (Batanov-Gaukhman, 2023a), since they compensate each other's manifestations (i.e. if we add 

or average all the metrics (2) – (10) and (12) – (20), the result will be zero). 

 
 

MATERIALS AND METHOD 
 

1 Infinite "electron" and "positron" 

 
The sets of metric solutions (1) and (11) are the most simplified metric-dynamic models of the "electron" and 

"positron". They are called valence (from the Latin valentis - strong, durable; influential, by analogy with valence 
quarks in nuclear physics), since the sets of metric solutions (1) and (11) determine the average stable structure 

of the "electron" and "positron". 
 

Firstly, the vacuum constantly and everywhere chaotically oscillates and curves, so its structure is revealed only 

by averaging these fluctuations. Second, according to the fundamentals of the Algebra of signature (see §2.9 in 
(Batanov-Gaukhman, 2023c) and §2.7 in (Batanov-Gaukhman, 2023e)), any pair of metrics with mutually opposite 

signatures can be represented as a sum (or average) of 7 + 7 = 14 metrics with other signatures. 
 

For example, a mutually opposite pair of metrics ds(– + + –)2 and ds(+ – – +)2 with opposite signatures (– + + +) and 

(+ – – –) can be expressed by summing (or averaging) 7 + 7 = 14 metrics with signatures                                                                                                                                                                                                  

                                                                                                                                                     (21)        

 
 

 
 

 
 

 

 
 

 
Recall that each signature corresponds to a topology of metric extension (see §4 in (Batanov-Gaukhman, 2023b)). 

 

For example, the mutually opposite (conjugate) pair of metrics (2) and (12) 
 

𝑑𝑠1
(+−−−)2

=  (1 −
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2  −  
𝑑𝑟2

(1−
𝑟6
𝑟
+
𝑟2

𝑟2
2)

 −  𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2)     with signature (+ – – –),             (2′)         

 

𝑑𝑠1
(−+++)2

= −(1 +
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

−(1− 
𝑟6
𝑟
 + 
𝑟2

𝑟2
2)

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2)   with signature (– + + +)           (12′) 

 
can be represented as a sum (or average) of  7 + 7 = 14 sub-metrics with the same components 

 

𝑔00 = (1 −
𝑟6

𝑟
+
𝑟2

𝑟2
2),      𝑔11 = (1 −

𝑟6

𝑟
+
𝑟2

𝑟2
2)
−1

,       𝑔22 =  r2,       𝑔33 =  r2sin2,                                   (22)               

 

and signatures from rankings (21):          
                                                                                                                                                      

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (+ –  –  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(–  +  +  +)+ 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 

=0. 
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(23) 

ds(+ + + +)2 =      𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2       + 

ds(– – – +)2 = – 𝑔00 dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33 dx3

2      + 

ds(+ –  – +)2 =    𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33 dx3

2          + 

ds(– – + –)2 =  – 𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2       + 

ds(– + – –)2  = – 𝑔00 dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33dx3

2       + 

ds(+ –  + –)2 =    𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2        + 

ds(+ + – –)2  =     𝑔00dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33 dx3

2          + 

_____________________________________________________________________ 

ds(+ – – –)2 =     𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔00dx2
2 – 𝑔00dx3

2           + 

ds(– – – – )2  = – 𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33dx3

2         = 0 

ds(+ + +  –)2  =      𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2        = 0 

ds (– + + –)2 = – 𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2             = 0 

ds(+ + – +)2   =     𝑔00dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33dx3

2         = 0 

ds(+ – + +)2  = – 𝑔00 dx1
2+ 𝑔11dx2

2 + 𝑔22dx2
2 + 𝑔33dx3

2            = 0 

ds(– +  – +)2 = – 𝑔00dx0
2 + 𝑔00dx1

2 –  𝑔22dx2
2 + 𝑔33dx3

2            = 0 

ds(– – + +)2  =  – 𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2             = 0 

______________________________________________________________________ 

ds(– + + +)2  =  −𝑔00 dx0
2 + 𝑔11 dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2       = 0 

 

Summation (or averaging) in rankings (23) is performed by columns and by rows (§2.9 in (Batanov-Gaukhman, 
2023c) and §2.7 in (Batanov-Gaukhman, 2023e)). 

 

Similarly, all other conjugate pairs of metrics (3) – (10) and (12) – (20) can be decomposed into 7 + 7 = 14 sub-
metrics. 

 
In turn, mutually opposite pairs of sub-metrics from rankings (23) can be decomposed in exactly the same way 

into sums of 7 + 7 = 14 sub-sub-metrics. This can continue ad infinitum, provided that the condition of complete 

"vacuum balance" is met (i.e., if the summation of the entire infinite set of mutually exclusive metrics with different 
signatures is equal to zero) (see the Introduction in (Batanov-Gaukhman, 2023a)). 

 
Based on such decompositions of sets of metrics (1) and (11) into additive components with different signatures, 

one can form an idea of a seething sea of so-called colored "quarks" and "antiquarks" (see Table 1 in (Batanov-

Gaukhman, 2023e)), similar to the quark-gluon sea in nuclear physics. 
               

Thus, the “electron” and “positron” are infinitely complex, but on average they are stable spherical vacuum for-
mations. 

 
That is, the "electron" is an extremely complex iridescent, but on average stable "convexity" of the outer side of 

the -12,-15-vacuum, and its antipode, the "positron", is an extremely complex iridescent, but on average stable 

"concavity" of the inner side of the -12,-15-vacuum. 

 

As a result of averaging the most complex fluctuations of the -12,-15-vacuum (see the illustration in Figure 1), a 

stable metric-dynamic structure of the valence "electron" (1) and valence "positron" (11) emerges from chaos, 
which are studied below. 

 

2 Free valence "electron" and "positron" 
 

Let’s consider the average structure of a free valence "electron" based on a set of metrics-solutions (1) and the 
methods of Geometricized Vacuum Physics and the Algebra of signature" (Batanov-Gaukhman, 2023a, 2023b, 

2023c, 2023d, 2023e, 2023f). 

 
The structure of a free valence "positron", and all other valence colored "quarks" from Table 1 in (Batanov-

Gaukhman, 2023f), is studied similarly. 
 

2.1 Deformation of the outer shell and core of a free valence “electron” and “positron” 

 
We recall that in §2.7 in (Batanov-Gaukhman, 2023b) it was conventionally accepted that metrics with the signa-

ture (+ – – –) describe the metric-dynamic state of the external side of the -12,-15-vacuum (i.e., the subcont), and 
metrics with the signature (– + + +) describe the metric-dynamic state of the internal side of the -12,-15-vacuum 
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(i.e., the antisubcont). The concepts of "subcont" (short for substantial continuum) and "antisubcont" were intro-

duced, on the one hand, to shorten the long terms "external side of the -12,-15-vacuum" and "internal side of the 

-12,-15-vacuum", and on the other hand, to create the illusion of two conjugate continuous elastic-plastic media, 
for the convenience of describing and perceiving intra-vacuum processes. But let us note once again that "subcont" 

and "antisubcont" are not real continuous media, but auxiliary mental constructs, the same as "space" and "time" 
in Kant's philosophy. Let’s also recall that according to §2.1 in (Batanov-Gaukhman, 2023a), the -12,-15-vacuum is 

a 3-dimensional landscape (i.e., a 3D-network) illuminated from emptiness (i.e., the Einstein vacuum) by probing 
it with mutually perpendicular light beams with a wavelength of -12,-15 from the range Δ =10–12 10–15 cm. 

 

 
2.1.1 Averaged deformation of the outer shell of the “electron” 

 
Within the framework of the theory developed here, the averaged metric-dynamic model of the outer shell of a 

free valence “electron” is determined by the metrics-solutions (2) – (5), (10) of the second Einstein vacuum 
equation 𝑅𝑖𝑘 + Λ𝑔𝑖𝑘 = 0:   
 

𝑑𝑠1
(+−−−)2

= (1 −
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1− 
𝑟6
𝑟
+
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                       (2′)         

𝑑𝑠2
(+−−−)2

= (1 +
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+ 
𝑟6
𝑟
 − 
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                      (3′)           

𝑑𝑠3
(+−−−)2

= (1 −
𝑟6

𝑟
−
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1− 
𝑟6
𝑟
 − 
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                      (4′)          

𝑑𝑠4
(+−−−)2

= (1 +
𝑟6

𝑟
+
𝑟2

𝑟2
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟6
𝑟
 + 
𝑟2

𝑟2
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                      (5′)    

𝑑𝑠5
(+−−−)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                               (10′)     

  

In this section, we are interested in the neighborhood of the “electron” core in the range from r6 ~ 10–13 cm to      

𝑟 ~ 1012 cm. In this region of the -12,-15-vacuum, the third terms 𝑟2 𝑟2
2⁄  ~ 1012 1058⁄  in the brackets of metrics             

(2) – (5) can be neglected.  

 
Therefore, as a result of averaging metrics (2′) and (4′), as well as metrics (3′) and (5′), we obtain 

 

𝑑𝑠1
(+)2

= (1 −
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1− 
𝑟6
𝑟
)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                       (24)         

𝑑𝑠2
(+)2

= (1 +
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1+ 
𝑟6
𝑟
 )
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                       (25)           

𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                      (26)     

 
Let’s use a similar situation considered in §2.8 in (Batanov-Gaukhman, 2023e). 

 
Both metrics (24) and (25) are solutions of the same first Einstein vacuum equation 𝑅𝑖𝑘 = 0 under the same 

conditions. Therefore, we consider the result of their averaging (see §2.8 in (Batanov-Gaukhman, 2023e)) 
 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) = 𝑐2𝑑𝑡2 −

𝑟2

𝑟2−𝑟6
2 𝑑𝑟

2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                (27)              
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The relative elongation of the outer side of the -12,-15-vacuum (i.e., 

the subcont) is determined by expression (47) in (Batanov-Gaukhman, 

2023c) 

𝑙𝑖
(+)
= √1 +

𝑔
𝑖𝑖
(+)
−𝑔𝑖𝑖0

(+)

𝑔𝑖𝑖0
(+) − 1,                                                (28)      

where 

𝑔𝑖𝑖
(+)
 are the components of the metric tensor of the curved area of the 

-12,-15-vacuum; 

𝑔𝑖𝑖0
(+) are the components of the metric tensor of the same area of the 

-12,-15-vacuum before the curvature (i.e. in the absence of its curva-

ture). 

 

Let’s substitute into Ex. (28) the components 𝑔𝑖𝑖
(+)

 from the averaged 

metric (27), and the components 𝑔𝑖𝑖0
(+)

 from the original metric (26), 

as a result we obtain 

𝑙𝑟
(+)
=
Δ𝑟

𝑟
= √

𝑟2

𝑟2−𝑟6
2 − 1,     𝑙𝜃

(+)
= 0,     𝑙𝜙

(+)
= 0.             (29)         

 

The graph of the radial component of the relative elongation of the subcont (29) 𝑙𝑟
(+)
= Δr/r  in the outer shell of 

the "electron" is shown in Figure 2. At  r = r6 ~ 10–13 cm, this function tends to infinity (Δr/r = ). 

 

2.1.2 Average deformation of the "electron" core 
 

The metric-dynamic model of the core of a free valence "electron" is determined by metrics (6) – (9) and (10) 

 

𝑑𝑠1
(+)2

= −(1 −
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

−(1− 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                      (30)    

      

𝑑𝑠2
(+)2

= −(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1+ 
𝑟7 
𝑟
 − 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                     (31)  

      

𝑑𝑠3
(+)2

= −(1 −
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1− 
𝑟7
𝑟
 −
𝑟2

 𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                      (32)  

       

𝑑𝑠4
(+)2

= −(1 +
𝑟7

𝑟
+
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

− (1 + 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                     (33)    

      

𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                    (34)     

 

We use a similar situation considered in §4 in (Batanov-Gaukhman, 2023e). 
 

Let’s average the metrics (30) – (33) 
 

ds1-4
(+)2 = 1

4
 (ds1

(+)2+ ds2
(+)2 +ds3

(+)2+ ds4
(+)2).                                                                                       (35)   

 

As a result, we obtain an average metric 

 
       Fig. 2: Graph of the relative elongation 

 function (29) 𝑙𝑟
(+)
=
Δ𝑟

𝑟
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𝑑𝑠1−4
(+)2

= 𝑐2𝑑𝑡2 + 𝑔11
(+)
(𝑟)𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                           (36) 

 

where 

𝑔11
(+)(𝑟) =

1

4
[

1

(1− 
𝑟10
𝑟
 + 
𝑟2

𝑟6
2)

+
1

(1+ 
𝑟10 
𝑟
 − 
𝑟2

𝑟6
2)

+
1

(1− 
𝑟10
𝑟
 − 
𝑟2

𝑟6
2)

+
1

(1+ 
𝑟10
𝑟
 + 
𝑟2

 𝑟6
2)

].                                                            (37) 

 

We substitute the components 𝑔𝑖𝑖
(+)

 (37) of the averaged metric (36) into the expressions for the relative elonga-

tion (28), where the components 𝑔𝑖𝑖0
(+)

 are taken from the uncurved metric (34). 

 

As a result, we obtain the relative elongation of the outer side of the -12,-15-vacuum (i.e., the subcont) inside the 

core of the "electron" (i.e. in the range from r7 ~ 10–24 cm to r6 ~ 10–13 cm) 

                                                                                                   

𝑙𝑟
(+)
=
Δ𝑟

𝑟
= √𝑔11

(+)
(𝑟) − 1 =  √

1

4
[

1

(1− 
𝑟10
𝑟
 + 
𝑟2

𝑟6
2)

+
1

(1+ 
𝑟10 
𝑟
 − 
𝑟2

𝑟6
2)

+
1

(1− 
𝑟10
𝑟
 − 
𝑟2

𝑟6
2)

+
1

(1+ 
𝑟10
𝑟
 + 

𝑟2

 𝑟6
2)

]  − 1,            (38)                          

 

𝑙𝑡
(+)
= 0,        𝑙𝜃

(+)
= 0,      𝑙𝜙

(+)
= 0.                                                             

 

The graph of the radial component of the relative elongation of the subcont (38) 𝑙𝑟
(+)
= Δr/r in the “electron” core 

is shown in Figure 3. At r = r6 ~ 10–13 cm, this function also tends to infinity (Δr/r = ). 

 

 

The combination of the graphs of functions (29) and (38) is shown in Figure 4. These graphs show that the outer 

side of the -12,-15-vacuum (i.e., the subcont) is strongly deformed (more precisely, stretched in the radial direction 

to infinity) on both sides of the edge of the "electron" core with a radius of r6 ~ 10–13 cm. With distance from the 

edge of the core, the deformation of the subcont decreases. However, as we approach the center of the "electron" 

core, the radial stretching of the subcont increases again as we approach the inner nucleolus (i.e., the "proto-

quark" core) with a radius of r7 ~ 10–24 cm. 

Fig.3: Graph of the function (38) of the relative 

elongation 𝑙𝑟
(+)

 of the outer side of the -12,-15-vac-

uum (i.e., the subcont) inside the core of the “elec-
tron” 

 

 

 

Fig. 4: Combined graphs of functions (29) and (38) of the relative elonga-

tion 𝑙𝑟
(+)

of the outer side of the -12,-15-vacuum (i.e., the subcont) outside 

and inside the core of the “electron” 
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Radial extension of the subcont to infinity seems unrealistic. However, as noted in §5.2 in (Batanov-Gaukhman, 
2024b), if in the area of raqiya (see Figure 1 and §4.11 in (Batanov-Gaukhman, 2023f)) the subcont seems to boil 
(i.e. becomes more and more broken and twisted, see the illustrations in Figure 18 in (Batanov-Gaukhman, 
2024b)), then its geodesic lines can extend almost to infinity, just as the Koch curve extends to infinity as the 
iterations of this fractal increase (see Figure 16 in (Batanov-Gaukhman, 2023e)). It is interesting that the Koch 
curve was described by the Swedish mathematician Helge von Koch, but A. Einstein's mother was also called 
Pauline Koch. There is another coincidence: A. Einstein's teacher of Judaism was called Heinrich Friedman, and 
the author of the theory of a non-stationary Universe was Alexander Friedman. 
 
 
2.1.3 Average deformation of the outer shell and core of the "positron" 
 
The deformation of the outer shell and core of the free valence "positron", the metric-dynamic model of which is 

determined by the set of metrics (11), completely coincide with the deformations of the "electron" with the only 

difference that in this case the inner side of the -12,-15-vacuum (i.e. the antisubcont) is radially extended. 

 
 

2.2 Subcont flows in the outer shell and in the core of a free valence "electron" and "positron" 
 

As has been noted more than once in (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f), the 

theory developed here has a significant conceptual difference from Einstein's general theory of relativity (GTR) in 

the matter of the physical interpretation of the zero components of the metric tensor 𝑔00
(+) and  𝑔0𝑖

(+) = 𝑔𝑖0
(+)

. In GTR, 

the zero components affect the rate of time, while in the geometrized vacuum physics developed here, the zero 

components are associated with the rectilinear and rotational motion of the layers of the m,n-vacuum (see §6 in 

(Batanov-Gaukhman, 2023c) and §2.8.4 in (Batanov-Gaukhman, 2023e)). 

 

Apparently, both interpretations of the zero components of the metric tensor do not exclude but complement each 
other. In a number of tasks, it is convenient to assume that the curvature of space-time affects natural phenomena. 
In other tasks it is more convenient to assume that vacuum layers have elastic-plastic properties (similar to ma-
terial continuous media), and the same zero components of the metric tensor are associated with the velocities 
and accelerations of these media. 
 
Let’s return to the study of metrics (24) and (25), which describe the metric-dynamic (MD) state of the subcont 

in the outer shell of the "electron" (see §§2.8.3 and 2.8.4 in (Batanov-Gaukhman, 2023e)) 
   

𝑑𝑠1
(+)2

= (1 −
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1− 
𝑟6
𝑟
)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2)  –  MD state of the a-subcont,                           (24′)         

𝑑𝑠2
(+)2

= (1 +
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1+ 
𝑟6
𝑟
 )
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2)  – MD state of the b-subcont,                           (25′)           

𝑑𝑠5
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2)  – MD state of the subcont before deformation.                 (26′)     

 

 

In §6.2 in (Batanov-Gaukhman, 2023c) several kinematic cases of motion of layers of two-sided m,n-vacuum were 

considered. We apply this kinematic approach to the use of metrics (24) and (25). 
 

 
2.2.1 Velocities of subcont currents and countercurrents in the outer shell of the "electron" 
 

For metrics (24′) and (25′) the metric (96) in (Batanov-Gaukhman, 2023c) with the same signature (+ – – –), but 
in spherical coordinates, is suitable. 
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𝑑𝑠(+)2 = (1 −
𝑣𝑟𝑎
2

𝑐2
) 𝑐2𝑑𝑡2 + 2𝑣𝑥𝑑𝑟𝑐𝑑𝑡 − 𝑑𝑟

2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                     (39)                                 

 

since in this metric, as well as in metrics (24′) and (25′), the components of the metric tensor 𝑔𝑖0
(+)

 = 𝑔𝑖0
(+)

 = 0. 

 

Let's compare 𝑔00
(+)

  in metrics (24′) and (39), and as a result we get                                

 

1 −
𝑟6

𝑟
= 1 −

𝑣𝑟𝑎
2

𝑐2
 ,   

 

from where we determine the components of the velocity vector of the a-subcont in the outer shell of the "electron" 

 

𝑣𝑟𝑎 = √
𝑐2𝑟6

𝑟
 ,    𝑣𝜃𝑎 = 0 ,    𝑣𝜙𝑎 = 0.                                                                                            (40)                                                         

                                                                 

Now let us compare 𝑔00
(+)

 in metrics (25′) and (39), as a result we get 

 

1 +
𝑟6

𝑟
= 1 +

𝑣𝑟𝑏
2

𝑐2
 ,  

 

from where we determine the components of the velocity vector of the b-subcont in the outer shell of the "elec-

tron" 
 

− 𝑣𝑟𝑏
2 = 

𝑐2𝑟6

𝑟
   or   𝑣𝑟𝑏 = √−

𝑐2𝑟6

𝑟
= 𝑖√

𝑐2𝑟6

𝑟
 ,                                                                                                 

or  −𝑖𝑣𝑟𝑏 = √
𝑐2𝑟6

𝑟
 ,    𝑣𝜃𝑏 = 0 ,    𝑣𝜙𝑏 = 0.                                                                                          (41)   

 

Also compare 𝑔00
(+)

 in the original metric (26′), and in the averaged 

metric (36) with 𝑔00
(+)

 in the metric (39), and we obtain 

 

1 = 1 −
𝑣𝑟
(+)2

𝑐2
 .    

 

As a result, we obtain for the subcont velocity in the case of no defor-

mations and in the case of averaging 
 

𝑣𝑟
(+)2 = 0,   𝑣𝜃

(+) = 0,    𝑣𝜙
(+) = 0.                                                (42)      

 
According to Exs. (40), (41) and (42), in all radial directions from the 

core of the “electron”, the average velocity of the subcont (or ab-sub-
cont) in the outer shell of the “electron” is equal to zero everywhere 

 

𝑣𝑟𝑎𝑏
(+)2 =

1

2
(𝑣𝑟𝑎
2 − 𝑣𝑏

2) = 0   or  |𝑣𝑟𝑎𝑏
(+) | =

1

√2
|√

𝑐2𝑟6

𝑟
− 𝑖√

𝑐2𝑟6

𝑟
| = 0.        (43)   

 

This means that the a-subcont flows in the form of thin streams (currents) from all sides to the "electron" raqiya 
along a multitude of spirals, i.e., wrapping around all radial directions (see Figures 5 and 6). In this case, the         

a-subcont velocity gradually increases practically from zero to reaching the speed of light c at r ≈ r6 ~ 10–13 cm. 

 
 

Fig. 5: An attempt to recreate a sche-
matic picture of the inflow of a-sub-
cont and the outflow of b-subcont 

to/from the “electron” raqiya 
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That is, in the area of the raqiya, the a-subcont falls with a speed close to the speed of light into the spherical 

abyss-crack between the outer shell and the "electron" core (see Figures 5 and 6). At the same time, the                         

b-subcont flows away from the spherical abyss-crack in the form of thin streams (currents) in all directions along 

a multitude of counter-spirals (wrapping around radial directions), starting from the speed of light c at r ≈ r6, and 

gradually decreasing to zero.  
 

 
Fig. 6: Illustration of subcont currents in the outer shell of the "electron": the a-subcont flows in the form of thin streams 

(currents) along spirals twisted around all radial directions to the "electron" raqiya with a radius r0 = r6, gradually increasing 

the speed from zero to the speed of light c. At the same time, the b-subcont flows out in the form of thin streams (currents) 
along counter-spirals around all radial directions from the "electron" raqiya, starting from the speed of light and gradually 

decreasing to zero. 
 
 

In total, the a-subcont and b-subcont currents are twisted into counter double spirals (see Figure 6), which, on 

average, in each local region of the outer shell of the "electron" completely compensate for each other's manifes-
tations. That is, in each local region, a balance of subcont currents and countercurrents is maintained along the 

threads (lines) twisted into double spirals (see Figures 6). 
 

The relative radial elongation of these double helices was considered in the previous paragraph (see Figure 2). In 

this case, the greater the radial deformation of the subcont as it approaches the "electron" raqiya, the greater the 
speed of the subcont currents and countercurrents. It should be expected that when the speed of the radial 

subcont currents and countercurrents reaches a certain critical value 𝑣𝑟 кр 
(+)

 

 

𝑣𝑟 𝑐𝑟 
(+) = √

𝑐2𝑟6

𝑟𝑐𝑟
 ,                                                                                                                            (44)   

 

their laminar flow becomes turbulent, which corresponds to an increase in the brokenness and twisting of the 

subcon radial lines as they approach the "electron" raqiya. It is possible that for the subcont currents and coun-

tercurrents it will subsequently be possible to obtain a number corresponding to the Reynolds number in hydro-
dynamics. 
 

Thus, from the metric solutions (24') and (25') of the Einstein vacuum equations, the soliton character of a stable 

spherical vacuum formation (in particular, an "electron") was revealed. Since local radial deformations of the 
subcont are supported by the corresponding velocities (more precisely, accelerations, see the next paragraph) of 

the subcont currents and countercurrents. With an increase in the radial deformation of the subcont, the velocities 

and accelerations of the radial subcont currents and countercurrents also increase proportionally. When the radial 
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lines of the subcont are in a broken and twisted state in the region of the "electron" raqiya, the subcont currents 

and countercurrents change from laminar to turbulent flow. 

 
Comparison of the kinematic metric (39) with the metrics-solutions of the vacuum equation (24) and (25) is quite 

logically justified but is of a heuristic nature. However, we will show that the relativistic method of determining 
the velocity leads to absurd results. In GTR, the velocity is determined by the formula (Landau & Lifshitz, 1971) 
 

𝜈(+) =
𝑑𝑙

𝑑𝜏
=

√(−𝑔𝛼𝛽
(+) 
+ 
𝑔0𝛼
(+)

𝑔
0𝛽
(+)

𝑑𝑔00
(+) )𝑑𝑥

𝛼𝑑𝑥𝛽

√𝑔00
(+)
𝑑𝑡

 .                                                                                                                                            

 

Substituting the components 𝑔𝛼𝛽
(+)
,  𝑔0𝛼

(+)
 and 𝑔00

(+)
 from the metric (24′) into this expression, we obtain the compo-

nents of the velocity vector of the a-subcont 
 

𝑣𝑟𝑎
(+)
= √

−𝑔11
(+𝑎)

𝑔00
(+𝑎)

𝑑𝑟

𝑑𝑡
=

1

(1− 
𝑟6
𝑟
)

𝑑𝑟

𝑑𝑡
=

𝑐

(1− 
𝑟6
𝑟
)
,     𝑣𝜃𝑎

(+)
= 0,     𝑣𝜙𝑎

(+)
= 0.  

 

From these expressions it is clear that the radial component of the velocity at r = r6 tends to infinity, and at large 

r this velocity tends to the speed of light c. Obviously, this result is absurd. 

 

2.2.2 Acceleration of subcont currents and countercurrents in the outer shell of a free valence “electron” 
 

In §5 in (Batanov-Gaukhman, 2023d), Ex. (108) was written for the acceleration of the m,n-vacuum layer in the 

stationary case 
 

a = 𝑎⃗ =
1

√1−
𝑣2

𝑐2

𝑐2 {−𝑔𝑟𝑎𝑑(𝑙𝑛 √𝑔00) + √𝑔00 [
𝑣⃗⃗

𝑐
× 𝑟𝑜𝑡𝑔⃗]} = 𝐄𝑣 +  [𝐯  𝐁𝑣],                                                 (45)               

where  𝑔⃗(𝑔1,𝑔2, 𝑔3) is a 3-dimensional vector with components 

                                                                       

 

𝑔1 = −
𝑔01

𝑔00
,
   
𝑔2 = −

𝑔02

𝑔00
,
    
𝑔3 = −

𝑔03

𝑔00
;
                                                                                    

      (46)  

Ev = 𝐸⃗⃗𝑣 = − 𝛾𝑐  𝑔𝑟𝑎𝑑 𝜑;                                                                                                                 (47)  

Bv = 𝐵⃗⃗𝑣 = 𝛾𝑐  √𝑔00 𝑟𝑜𝑡
𝐴

с 
;                                                                                                             (48)   

𝜑 = 𝑙𝑛√𝑔00  is geometrized scalar potential;                                                                                    (49) 

𝐴 = 𝑔⃗            is geometrized vector potential;                                                                                   (50)  

𝛾𝑐 =
𝑐2

√1−
𝑣2

𝑐2

,    is Lorentz factor multiplied by 𝑐2.                                                                                  (51)   

       

Ev   is geometrized vector of eclectic intensity with components: 

𝐸𝑣1 = 𝛾𝑐  
𝜕 𝑙𝑛√𝑔00

𝜕𝑥1
,
      

𝐸𝑣2 = 𝛾𝑐  
𝜕 𝑙𝑛√𝑔00

𝜕𝑥2
,
      

𝐸𝑣3 = 𝛾𝑐  
𝜕 𝑙𝑛√𝑔00

𝜕𝑥3
.
 
                                                                   (52)   

     

Bv  is geometrized magnetic induction vector with components: 

𝐵𝑣1 = 𝛾𝑐 √𝑔00 (
𝜕𝑔3

𝜕𝑥2
−
𝜕𝑔2

𝜕𝑥3
),     𝐵𝑣2 = 𝛾𝑐 √𝑔00 (

𝜕𝑔1

𝜕𝑥3
−
𝜕𝑔3

𝜕𝑥1
),

 

     𝐵𝑣3 = 𝛾𝑐  √𝑔00 (
𝜕𝑔2

𝜕𝑥1
−
𝜕𝑔1

𝜕𝑥2
).

                               

(53)  
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In metrics (24′) and (25′), describing the metric-dynamic state of the 

subcont in the outer shell of the “electron”, all mixed zero components 

of the metric tensor are equal to zero (𝑔0α
(+)
= 𝑔0α

(+)
= 0). Therefore,     

Eq. (45) for the acceleration of the subcont in the stationary case is 
simplified to a vector equation of the geometrized electric field 

 

𝐸𝑣𝜇
(+)
= 𝑎𝜇

(+)
= −

𝑐2

√1− 
𝜈(+)2

𝑐2

𝜕 𝑙𝑛√𝑔00
(+)

𝜕𝑥𝜇
,    where  𝜇 = 1, 2, 3.            (54) 

 

Let’s substitute into Ex. (54) the zero component of the metric tensor 

𝑔00
(+)

 from the metric (24′) and the corresponding velocity (40)                

𝜈(+)2 = 𝑣𝑟𝑎
2 =

𝑐2𝑟6

𝑟
 , as a result we obtain 

 

𝐸𝑣𝑟
(+𝑎)

= 𝑎𝑟
(+𝑎) = −

𝑐2

√1− 
𝑟6
𝑟

𝜕 𝑙𝑛√(1− 
𝑟6
𝑟
)

𝜕𝑟∗𝑎
= −

𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)

,       Е𝜃
(+а) = 0,      Е𝜙

(+а) = 0,                                (55) 

 

where    
𝜕

𝜕𝑟∗𝑎
= 𝑔11(+𝑎)

𝜕

𝜕𝑟
= (1 −

𝑟6

𝑟
)
𝜕

𝜕𝑟
 .  

 

Let’s substitute into Ex. (54) the zero component of the metric tensor 𝑔00
(+)

 from the metric (25′) and the corre-

sponding velocity (41) 𝜈(+)2 = 𝑣𝑟𝑏
2 = −

𝑐2𝑟6

𝑟
 , as a result we obtain 

 

𝐸𝑣𝑟
(+𝑏)

= 𝑎𝑟
(+𝑏)

= −
𝑐2

√1+ 
𝑟6
𝑟

𝜕 𝑙𝑛√(1+ 
𝑟6
𝑟
)

𝜕𝑟∗𝑏
=

𝑐2𝑟6

2𝑟2√(1+ 
𝑟6
𝑟
)

,       Е𝜃
(+𝑏)

= 0,      Е𝜙
(+𝑏)

= 0,                                  (56) 

 

where   
𝜕

𝜕𝑟∗𝑏
= 𝑔11(+𝑏)

𝜕

𝜕𝑟
= (1 +

𝑟6

𝑟
)
𝜕

𝜕𝑟
 .                       

 

As shown in the previous paragraph, the inflowing currents of the a-subcont and the outflowing currents of the 
b-subcont are twisted into double spirals (see Figure 6). Therefore, according to §4.4 in (Batanov-Gaukhman, 

2024a), the total radial acceleration of the subcont 𝑎𝑟
(+𝑎𝑏)

 is determined by the complex Ex. (104) in (Batanov-

Gaukhman, 2023d) 

 

𝑎𝑟
(+𝑎𝑏)

=
1

√2
(𝑎𝑟
(+𝑎) + 𝑖𝑎𝑟

(+𝑏)) =
1

√2
(𝐸𝑣𝑟

(+𝑎)
+ 𝑖𝐸𝑣𝑟

(+𝑏)
),                                                                        (57)     

 
more precisely, the modulus of this expression                                                                                                                                                                                         
                                                                                                                                                    (58) 

𝑎𝑟
(+𝑎𝑏)

= 𝐸𝑣𝑟
(+𝑎𝑏)

=
1

√2
√𝐸𝑟

(+а)2
+ 𝐸𝑟

(+𝑏)2
=

1

√2
√(−

𝑐2𝑟6

2𝑟2√(1+ 
𝑟6
𝑟
)
)

2

+ (
𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)
)

2

=
1

√2

𝑐2𝑟6

2𝑟2 √
1

(1+ 
𝑟6
𝑟
)
+

1

(1− 
𝑟6
𝑟
)
 =

𝑐2𝑟6

2𝑟2√1− 
𝑟6
2

𝑟2

 .  

As a result, it turned out that the acceleration vector of the subcont (or the geometrized vector of the eclectic 

intensity of the subcont) in the outer shell of the “electron” is given by the components 
 

       

  

Fig. 7: Graph of function (59) 𝐸𝑣𝑟
(+𝑎𝑏)
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𝑎𝑟
(+𝑎𝑏)

= 𝐸𝑣𝑟
(+𝑎𝑏)

=
𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

 ,   𝑎𝛼𝜃
(+)
= 𝐸𝑣𝜃

(+𝑎𝑏)
= 0,    𝑎𝛼𝜙

(±)
= 𝐸𝑣𝜙

(+𝑎𝑏)
= 0.                                             (59) 

The graph of the radial component of acceleration 𝑎𝑟
(+𝑎𝑏)

 is shown in Figure 7. 

 

From Exs. (59) it follows that at r » r6   
 

𝑎𝑟
(+𝑎𝑏)

= 𝐸𝑣𝑟
(+𝑎𝑏)

≈
𝑐2𝑟6

2𝑟2
 ,                                                                                                       (60)    

 

𝑎𝛼𝜃
(+)
= 𝐸𝑣𝜃

(+𝑎𝑏)
= 0,      𝑎𝛼𝜙

(+)
= 𝐸𝑣𝜙

(+𝑎𝑏)
= 0.     

 

In classical electrostatics, the vector of the electric field strength of a point charge (in particular, an electron) in a 

vacuum is determined by the components: 
 

𝐸𝑟 =
е

4𝜋𝜀0𝑟
2,   𝐸𝜃 = 0,  𝐸𝜙 = 0,                                                                                              (61)   

 

where  е = –1.6021910–19 C  is the electron charge; 0 = 8.85419 10–12 F/m is the electric constant.  

 
Comparing Exs. (60) and (61), we find the following correspondence between the parameters of classical electro-

statics and the parameters of geometrized subcont statics (i.e., stable accelerated motion of the subcont in the 
outer shell of the “electron”) 
е

4𝜋𝜀0
↔

𝑐2𝑟6

2
 .                                                                                                                         (62)    

In classical electrostatics, the heuristic concept of the "electric charge of an electron" e characterizes the intensity 
of its electromagnetic interaction with other particles. In the geometrized vacuum electrostatics developed here, 
the unclear ratio е 𝜀0⁄  is replaced by the product of clear concepts 𝑐2𝑟6. The speed of light c is a fundamental 

constant characterizing the elastic properties of a vacuum, 𝑟6 is the radius of a raqiya, i.e. a spherical abyss-crack 

surrounding the core of a stable vacuum formation (in particular, an "electron"), see Figure 8. 
 

 
Fig. 8: The outer shell, multilayer raqiya (neck), core and inner nucleolus of a spherical vacuum formation  

(in particular, an “electron” or “positron”) and its fractal illustrations 
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In quantum electrostatics, the effect of polarization of the physical vacuum around a point charge is taken into 

account. The vacuum seems to boil in the environment of the electron core (see Figure 8). This allowed quantum 

theorists to introduce the concept of an effective electric charge 
 

𝑒𝑒𝑓𝑓 ≈
𝑒

√(1−
𝑒2

6𝜋2
𝑙𝑛

ℏ

4𝑟𝑚𝑒
)

 ,        where ћ is the reduced Planck constant. 

 

The electric field strength around the effective charge takes the form 
 

𝐸𝑟 ≈
𝑒

4𝜋𝜀0𝑟
2(1−

𝑒2

6𝜋2
𝑙𝑛

ℏ

4𝑟𝑚𝑒
)

1
2

 .                                                                                                     (63)    

 

When comparing the radial components of the field strength vector (59) and (63), we again discover an obvious 
analogy 

 
1

√(1−
𝑒2

6𝜋2
𝑙𝑛

ℏ

4𝑟𝑚𝑒
)

 ↔  
1

√1−
𝑟6
2

𝑟2

 .                                                                                                               (64) 

 

In classical electrostatics, the potential of the electric field around a point charge e with strength (61) is determined 
by the expression 

 

𝜙е = −∫𝐸𝑟𝑑𝑟 =  −∫
𝑒

4𝜋𝜀0𝑟
2 𝑑𝑟 =  −

𝑒

4𝜋𝜀0
 ∫
𝑑𝑟

𝑟2
=

𝑒

4𝜋𝜀0𝑟
,                                                             (65)       

 

while the potential energy contained between two spheres with radii r1 and r2  

 

𝑈𝑒 = ∫ ∫ ∫ 𝜙е
𝑟2
𝑟1

2𝜋

0

2𝜋

0
𝑑𝑟𝑑𝜃𝑑𝜙 = 4𝜋2 ∫

𝑒

4𝜋𝜀0𝑟

𝑟2
𝑟1

𝑑𝑟 =
𝜋𝑞е

𝜀0
∫

1

𝑟

𝑟2
𝑟1

𝑑𝑟 =
𝜋𝑒

𝜀0
(𝑙𝑛 𝑟2 − 𝑙𝑛 𝑟1) =

𝜋𝑒

𝜀0
𝑙𝑛
𝑟2

𝑟1
 .             (66)                                                                                                                                                                                                  

 

In the fully geometrized vacuum electrostatics developed here, a similar potential of the subcont field strength in 
the outer shell of the “electron”, taking into account (59), is equal to 

 

𝜙𝑎𝑏
(+)(𝑟) =  −∫ 𝑎𝛼𝑟

(±)
𝑑𝑟 = −∫𝐸𝑣𝑟

(+𝑎𝑏)
𝑑𝑟 =  − ∫

𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

𝑑𝑟 = −
𝑐2𝑟6

2
∫

1

𝑟√𝑟2−𝑟6
2
𝑑𝑟 = −

𝑐2𝑟6

2
𝑎𝑟с 𝑠𝑒𝑐

𝑟

𝑟6
+ 𝐶,             (67)    

 
where the table integral 

 

∫
𝑑х

𝑥√𝑥2−𝑎2
=
1

𝑎
𝑎𝑟𝑐 𝑠𝑒𝑐

𝑥

𝑎
+ 𝐶 =

1

𝑎
𝑎𝑟𝑐𝑐𝑜𝑠

𝑎

𝑥
+ 𝐶  is used. 

 

Thus, the fully geometrized subcont electrostatics corresponds to the experimental data and reveals the geometric 
nature of the electric charge of the electron. 

 
Note that the relative elongation of the subcont (29), as well as the velocity (43) and acceleration (59) of the 

subcont current in the outer shell of the "electron" are determined relative to the initial substrate of the "electron" 
(34). A change in the substrate of the "electron" (for example, by transition to another coordinate system) can 

lead to instability of the vacuum formation. 
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2.2.3 Velocities of subcont currents and countercurrents in the core of a free valence “electron” 
 

We compare the zero components 𝑔00
(+)

 in metrics (30) – (33), which define the metric-dynamic model of the 

“electron” core, with the zero component in the kinematic metric (39). 

 

As a result, we obtain the velocities of four intertwined subcont currents inside the “electron” core                        

(1 +
𝑣𝑟𝑎
2

с2
) = (1 −

𝑟7

𝑟
+
𝑟2

𝑟6
2)  →    𝑣𝑟𝑎

2 = (
𝑟2

𝑟6
2 −

𝑟7

𝑟
) с2     →    𝑣𝑟𝑎 = √

𝑟2с2

𝑟6
2 −

𝑟7с
2

𝑟
= 𝑐√

𝑟2

𝑟6
2 −

𝑟7

𝑟
     for а-subcont,     (68)           

(1 +
𝑣𝑟𝑏
2

с2
) = (1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2)  →    𝑣𝑟𝑏

2 = (−
𝑟2

𝑟6
2 +

𝑟7

𝑟
) с2 →   𝑣𝑟𝑏 = √−

𝑟2с2

𝑟6
2 +

𝑟7с
2

𝑟
= 𝑐√

𝑟7

𝑟
−
𝑟2

𝑟6
2   for b-subcont,      (69)                                     

(1 +
𝑣𝑟𝑐
2

с2
) = (1 −

𝑟7

𝑟
−
𝑟2

𝑟6
2)  →    𝑣𝑟𝑐

2 = (−
𝑟2

𝑟6
2 −

𝑟7

𝑟
) с2 →   𝑣𝑟𝑐 = √−

𝑟2с2

𝑟6
2 −

𝑟7с
2

𝑟
= 𝑖𝑐√

𝑟2

𝑟6
2 +

𝑟7

𝑟
  for c-subcont,       (70)                                    

(1 +
𝑣𝑟𝑑
2

с2
) = (1 +

𝑟7

𝑟
+
𝑟2

𝑟6
2)  →    𝑣𝑟𝑑

2 = (
𝑟2

𝑟6
2 +

𝑟7

𝑟
) с2     →   𝑣𝑟𝑑 = √

𝑟2с2

𝑟6
2 +

𝑟7с
2

𝑟
= 𝑐√

𝑟2

𝑟6
2 +

𝑟7

𝑟
.    for d-subcont.     (71)                                          

Since 𝑣𝑟𝑖  cannot exceed the speed of light, the conditions must be satisfied 

 

0 ≤
𝑟2

𝑟6
2 +

𝑟7

𝑟
≤ 1,     0 ≤

𝑟2

𝑟6
2 −

𝑟7

𝑟
≤ 1,    0 ≤

𝑟7

𝑟
−
𝑟2

𝑟6
2 ≤ 1.                                                                       (72)                                                                                                                                   

 

At r ≈ r6  (i.e. in the region of the periphery of the “elec-

tron” core) all velocities (68) – (61) tend to the speed of 

light c. Also at r ≈ r7 (i.e. in the region of the inner nu-

cleolus, i.e. near the proto-quark core) all velocities          

(68) – (61) tend to the speed of light c. 
 

Thus, at the level of consideration of the nucleus of the 
valence "electron" on each radial direction four intra-

vacuum flows (currents) are wound. 

 
Two of these helical flows (b-subcont current and c-sub-

cont currents) flow away from the periphery of the core 
of the "electron", first at a speed close to the speed of 

light, then slowing down and then at the site of the inner 

nucleolus (i.e. near the proto-quark core) again acceler-
ating to the speed of light. 

 
Two other counter-rotating helical currents (the a-sub-

cont current and the d-subcont currents) flow away from 

the inner nucleolus, first at a speed close to the speed 
of light, then slowing down, and then at the periphery 

of the “electron” core again accelerating to a speed close 
to the speed of light. 

 
For clarity, it is convenient to assume that the a-subcont 

and b-subcont, as well as the counter-rotating c-subcont 

and d-subcont currents, flow along four sides of one 
twisted tetrahedron (see Figure 9). 

 

 
 

Fig. 9: A twisted tetrahedron, along one side of which 
the   a-subcont moves with acceleration, along the 

other side the b-subcont flows with acceleration, along 
the third and fourth sides the c-subcont and d-subcont 

flow towards them with acceleration. 
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At the same time, for an outside observer, the periphery of the “electron” core and the periphery of its inner 

nucleolus rotate intricately at a speed close to the speed of light. 
 

The total velocity of each radial subcont current (i.e. a bundle twisted from 4 threads) inside the core of the 

"electron" is determined by the quaternion (Batanov-Gaukhman, 2023d) 
 

𝑣𝑟(𝑎𝑏𝑐𝑑) = 
1

√4
(𝑣𝑟𝑎 + 𝑖𝑣𝑟𝑏+𝑗𝑣𝑟𝑐 + 𝑘𝑣𝑟𝑑),                                                                                         (73) 

 
more precisely, its modulus 

 

|𝑣𝑟(𝑎𝑏𝑐𝑑)| =
1

√4
√𝑣𝑟𝑎

2 + 𝑣𝑟𝑏
2 + 𝑣𝑟𝑐

2 + 𝑣𝑟𝑑
2 = 

с

2
√(

𝑟2

𝑟6
2 −

𝑟7

𝑟
) + (−

𝑟2

𝑟6
2 +

𝑟7

𝑟
) + (−

𝑟2

𝑟𝑎
2 −

𝑟7

𝑟
) + (

𝑟2

𝑟𝑎
2 +

𝑟7

𝑟
) = 0.    (74) 

 

That is, the intranuclear subcont currents and counter-currents on average completely compensate each other's 
manifestations. 
 

To obtain the radial components of the acceleration vectors of the four subcont intra-nuclear currents, we sequen-

tially substitute into expression (54). 

 
2.2.4 Acceleration of subcont currents and countercurrents in the nucleus of a free valence "electron" 
 
To obtain the radial components of the acceleration vectors of the four subcont intracore currents, we sequentially 

substitute into expression (54) 

 

𝐸𝑣𝑟
(+)
= 𝑎𝑟

(+) = −
𝑐2

√1− 
𝜈(+)2

𝑐2

𝜕 𝑙𝑛√𝑔00
(+)

𝜕𝑥𝜇
= −

𝑐2

√1− 
𝜈(+)2

𝑐2

𝑔11(+)
𝜕 𝑙𝑛 √𝑔00

(+)

𝜕𝑟
 ,                                                                 (54′) 

 

the covariant and contravariant components of the metric tensor 𝑔00
(+)  and  𝑔11(+) from metrics (30) – (33) and 

the corresponding velocities (68) – (71) 

 

𝑎𝑟
(+𝑎)

= 𝑐2√1 −
𝑟7

𝑟
+
𝑟2

𝑟6
2 

𝜕 𝑙𝑛√1− 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2

𝜕𝑟
=   

𝑐2(
𝑟7
𝑟2
 + 
2𝑟

𝑟6
2)

2√1 − 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2

          – a-subcont acceleration,                                  (75)     

 𝑎𝑟
(+𝑏)

= 𝑐2√1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2 

𝜕 𝑙𝑛√1+ 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2

𝜕𝑟
= −

𝑐2(
𝑟7
𝑟2
 + 
2𝑟

𝑟6
2)

2√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

    

       

– b-subcont acceleration,                                (76)            

 

𝑎𝑟
(+𝑐)

= 𝑐2√1 −
𝑟7

𝑟
−
𝑟2

𝑟6
2  

𝜕 𝑙𝑛√1− 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2

𝜕𝑟
=    

𝑐2(
𝑟7
𝑟2
 − 
2𝑟

𝑟6
2)

2√1− 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2          

– c-subcont acceleration,                                (77)              

 𝑎𝑟
(+𝑑)

= −𝑐2√1 +
𝑟7

𝑟
+
𝑟2

𝑟6
2  

𝜕 𝑙𝑛√1+ 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2

𝜕𝑟
= −

𝑐2(
𝑟7
𝑟2
 − 
2𝑟

𝑟6
2)

2√1 + 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2

      

– d-subcont acceleration.                                 (78) 

 

The remaining components of the acceleration vectors of the four subcont currents are zero. 
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The total radial acceleration of the subcont inside the core of the “electron” is given by the averaged quaternion 

(§4 in (Batanov-Gaukhman, 2023d)) 

 

𝑎𝑟(𝑎𝑏𝑐𝑑)
(+)  =

1

√4
 (𝑎𝑟

(+𝑎) + i𝑎𝑟
(+𝑏)

+ j𝑎𝑟
(+с)

+ k𝑎𝑟
(+𝑑)

),                                                                                                                                     (79) 

 
which describes the interweaving of 4 subcont currents and countercurrents around each radial direction inside 

the core of the “electron” (see Figure 9). 

 
The modulus of the averaged quaternion (79), taking into account expressions (75) – (78), is equal to 

 

|𝑎𝑟(𝑎𝑏𝑐𝑑)
(+)

|  =
1

√4
 √𝑎𝑟

(+𝑎)2
+ 𝑎𝑟

(+𝑏)2
+ 𝑎𝑟

(+𝑐)2
+ 𝑎𝑟

(+𝑑)2
=
𝑐2

4
√

(
𝑟7
𝑟2
 + 
2𝑟

𝑟6
2)

2

(1 − 
𝑟7
𝑟
 + 
𝑟2

𝑟6
2)

+
(
𝑟7
𝑟2
 + 
2𝑟

𝑟6
2)

2

(1+ 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2)

 +
(
𝑟7
𝑟2
 − 
2𝑟

𝑟6
2)

2

(1− 
𝑟7
𝑟
 −  

𝑟2

𝑟6
2)

+
(
𝑟7
𝑟2
 − 
2𝑟

𝑟6
2)

2

(1+ 
𝑟7
𝑟
+ 
𝑟2

𝑟6
2)

  .   (80)    

The graph of Function (80) is shown in Figure 10. 

 

Fig. 10: Graph of Function (80) for the conventionally accepted 𝑟7 = 0,001, 𝑟6 = 10, с =1. 

This function determines the distribution of the spiral-radial component of the acceleration 
 vector of the subcont inside the core of the "electron" 

 
From the graph in Figure 10 it is evident that the subcont has large accelerations near the periphery of the 

"electron" core and near the inner nucleolus (i.e. the core of the “proto-quark”). However, this is not the laminar 
acceleration of the subcont in the radial direction, but the averaged helical-radial acceleration of rotation of the 

four subcont currents along the intertwined 4-helix wound on each radial direction (see (Batanov-Gaukhman, 

2023d), Figure 10). Such an accelerated helical-rotational motion of the subcont currents and countercurrents 
around all radial directions creates an force that stretches the subcont, as shown in Figure 3. Moreover, the greater 

this helical-rotational acceleration, the greater the stretching of the subcont in the radial direction. 
 

If we neglect the small terms  r7/r  and  r7/r2  (or when r7 = 0) in Ex. (75) – (78), we obtain: 

𝑎𝑟
(+𝑎)

=
𝑐2𝑟

𝑟6
2√1+

𝑟2

𝑟6
2

      – a-subcont acceleration,         𝑎𝑟
(+𝑐)

= −
𝑐2𝑟

𝑟6
2√1−

𝑟2

𝑟6
2

 

       

– c-subcont acceleration,                 

𝑎𝑟
(+𝑏)

= −
𝑐2𝑟

𝑟6
2√1−

𝑟2

𝑟6
2

   

– b-subcont acceleration,          𝑎𝑟
(+𝑑)

=
𝑐2𝑟

𝑟6
2√1+

𝑟2

𝑟6
2

           

– d-subcont acceleration.             

In this case, the total acceleration of the subcont in the core of the "electron" in this case is equal to 
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𝑎𝑟
(+)
=

1

√4
√𝑎𝑟

(+а)2
+ 𝑎𝑟

(+𝑏)2
+ 𝑎𝑟

(+𝑐)2
+ 𝑎𝑟

(+𝑑)2
=

𝑐2

2𝑟6
2√

𝑟2

1+ 
𝑟2

𝑟6
2

+
𝑟2

1− 
𝑟2

𝑟6
2

+
𝑟2

1− 
𝑟2

𝑟6
2

+
𝑟2

1+ 
𝑟2

𝑟6
2

=
𝑐2√𝑟2

𝑟6
2√1−

𝑟4

𝑟6
4

 .             (80а)    

The graph of function (80a) is shown in Figure 11. 

 

Fig. 11: Graph of the function (80a) of acceleration of the subcont (with conventionally accepted r6 = 1, c = 1),  

in the case where there is no internal nucleolus inside the core of the “electron” 
 
 

3 Low-intensity "electron" - "photon" interaction 

 
Let’s consider the interaction of a free valence "electron" with a "photon". A separate study is necessary for a full-

fledged study of such interaction, but here we will present only the most basic aspects that concern the interaction 
of a stationary free valence "electron" with a "photon" whose wavelength λ is comparable to or slightly smaller 

than the size of the "electron" core (r6 ~ 10–13 cm). 

 

The "photon" and "antiphoton" are defined in §4.8 in (Batanov-Gaukhman, 2024c) as two mutually opposite wave 

disturbances of the -12,-15-vacuum, which are described by solutions (130) and (131) in (Batanov-Gaukhman, 

2023e)of the lianized Einstein vacuum equation (127) in (Batanov-Gaukhman, 2023c). 
 

a+ехр{i( t – k r)}     and     a–ехр –{i( t – k r)},   where  a+ and a–  – amplitudes of oscillations.              (81)                            

 
We will study how these “photons” interact with the outer shell of the “electron”, the metric-dynamic state of 

which is described by the metrics-solutions (24) and (25) with the signature (+ – – –): 

 

𝑑𝑠1
(+)2

= (1 −
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1− 
𝑟6
𝑟
)
− 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2   –  state a-subcont,                                        (24′)         

𝑑𝑠2
(+)2

= (1 +
𝑟6

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1+ 
𝑟6
𝑟
 )
− 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2   – state b-subcont,                                         (25′)   

 

or the averaged metric (27) 

 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) = 𝑐2𝑑𝑡2 −

1

1− 
𝑟6
2

𝑟2

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                               (27′)              

We represent the wave solutions (81) as a two-component column matrix and its Hermitian conjugate row matrix 
(§11 in (Batanov-Gaukhman, 2023b)) 

 

(𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)),  (

𝑎̄+𝑒
−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

).                                                                                    (82)         
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In this case, the metric (27′) must be represented as a spintensor (see §10 and §11 in (Batanov-Gaukhman, 

2023b)). 

 

Recall that the quadratic form 𝑠(+ − − −)2 = 𝑥0
2 − 𝑥1

2 − 𝑥2
2 − 𝑥3

2 is the determinant of all the following 22-matrices 

(i.e. Hermitian spintensors) (see matrices (64) in (Batanov-Gaukhman, 2023b)): 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

For example, we write one of the variants of the spintensor representation of the metric (27′) 
 

(

 
 
 
 

𝑐𝑑𝑡 +
1

√1− 
𝑟6
2

𝑟2

𝑑𝑟 𝑟 𝑠𝑖𝑛 𝜃𝑑𝜙 + 𝑖𝑟𝑑𝜃

𝑟 𝑠𝑖𝑛 𝜃𝑑𝜙 − 𝑖𝑟𝑑𝜃 𝑐𝑑𝑡 −
1

√1− 
𝑟6
2

𝑟2

𝑑𝑟

)

 
 
 
 

.                                                                                             (84) 

 

To shorten the notation, we get rid of the differentials and represent the matrix (84) as a sum of matrices 
 

(

 
 
 
 

1+
1

√1− 
𝑟6
2

𝑟2

𝑟 𝑠𝑖𝑛 𝜃 + 𝑖𝑟

𝑟 𝑠𝑖𝑛 𝜃 − 𝑖𝑟 1 −
1

√1− 
𝑟6
2

𝑟2 )

 
 
 
 

= (
1 0

0 1
) +

(

 
 
 

1

√1− 
𝑟6
2

𝑟2

0

0 −
1

√1− 
𝑟6
2

𝑟2)

 
 
 
+ (

0 𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑠𝑖𝑛 𝜃 0
) + (

0 𝑖𝑟

−𝑖𝑟 0
).                                    

 

 










++−

+−









++−

+−









++−

+−









++−

+−









++

+−−










++

+−−









+−

+−









−+

−+









++

−−









−−

++










++

+−−









+−

+−









−+

−+









++

−−









−−

++










++

+−−









+−

+−









−+

−+









++

−−









−−

++










++

+−−









+−

+−









−+

−+









++

−−









−−

++










++

+−−









+−

+−









−+

−+









++

−−









−−

++










++

+−−









+−

+−









−+

−+









++

−−









−−

++

1320

2013

3210

1032

3120

2031

1230

3012

1230

3012

1320

2013

2013

1320

2013

1320

2013

1320

2013

1320

3210

1032

1032

3210

1032

3210

1032

3210

1032

3210

2310

1023

3012

1230

3012

1230

3012

1230

3012

1230

3120

2031

2031

3120

2031

3120

2031

3120

2031

3120

1230

3012

1023

2310

1023

2310

1023

2310

1023

2310

2130

3021

3021

2130

3021

2130

3021

2130

3021

2130

xixxx

xxxix

xixxx

xxxix

xixxx

xxxix

xixxx

xxxix

xixxx

xxxix

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xixxx

xxxix

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx

xxixx

ixxxx
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By analogy with example 2 in §11 in (Batanov-Gaukhman, 2023b), we leave in this matrix only the spatial com-

ponents 

 

(

 
 
 
 

1

√1− 
𝑟6
2

𝑟2

𝑟 𝑠𝑖𝑛 𝜃 + 𝑖𝑟

𝑟 𝑠𝑖𝑛 𝜃 − 𝑖𝑟 −
1

√1− 
𝑟6
2

𝑟2 )

 
 
 
 

=

(

 
 
 

1

√1− 
𝑟6
2

𝑟2

0

0 −
1

√1− 
𝑟6
2

𝑟2)

 
 
 
+ (

0 𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑠𝑖𝑛 𝜃 0
) + (

0 𝑖𝑟

−𝑖𝑟 0
).                                           (85) 

 

As shown in §2.11 in (Batanov-Gaukhman, 2023b), the projections of the spin of the wave perturbation -12,-15-

vacuum on the coordinate axis for the case when the metric 3-space has the signature (+ – – –) can be defined 
using the spintensor (77) in (Batanov-Gaukhman, 2023b)                     

                                                                                                                                                    (86) 

 

(𝑠1
∗, 𝑠2

∗) (
𝑥1 𝑥3 + 𝑖𝑥2

𝑥3 − 𝑖𝑥2 −𝑥2
) (
𝑠1
𝑠2
) = 

 

= −𝑥1(𝑠1
∗, 𝑠2

∗) (
0 −1
−1 0

) (
𝑠1
𝑠2
)  − 𝑥2(𝑠1

∗, 𝑠2
∗) (
0 −𝑖
𝑖 0

) (
𝑠1
𝑠2
) − 𝑥3(𝑠1

∗, 𝑠2
∗) (
−1 0
0 1

) (
𝑠1
𝑠2
)  = 

 
= −(−𝑠2

∗𝑠1 − 𝑠2
∗𝑠1)𝑥1 − (𝑖𝑠2

∗𝑠1 − 𝑖𝑠1
∗𝑠2)𝑥2 − (−𝑠1

∗𝑠1 + 𝑠2
∗𝑠2)𝑥3.   

 
Using matrices (82) and (85), we write the following expression 

(𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟))

(

 
 
 
 

1

√1− 
𝑟6
2

𝑟2

𝑟 𝑠𝑖𝑛 𝜃 + 𝑖𝑟

𝑟 𝑠𝑖𝑛 𝜃 − 𝑖𝑟 −
1

√1− 
𝑟6
2

𝑟2 )

 
 
 
 

(
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

),                                               (87)     

 

Similarly to (86), we obtain the projections of the spin vector s of the considered wave vacuum disturbance on 
the axes r, θ, φ using the sum of matrices (85) 

⟨𝑠𝑟⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟))

(

 
 
 

1

√1− 
𝑟6
2

𝑟2

0

0 −
1

√1− 
𝑟6
2

𝑟2)

 
 
 
(
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) =
1

√1− 
𝑟6
2

𝑟2

(𝑎̄−
∗ 𝑎̄+ − 𝑎̄+

∗ 𝑎̄−),                     (88) 

 

⟨𝑠𝜃⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

0 𝑖𝑟

−𝑖𝑟 0
)(
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = 𝑖𝑟 [𝑎̄+
∗ 𝑎̄−𝑒

𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) − 𝑎̄−

∗ 𝑎̄+𝑒
−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)],        

 

⟨𝑠𝜙⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

0 𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑠𝑖𝑛 𝜃 0
) (
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = 𝑟 𝑠𝑖𝑛 𝜃 [𝑎̄+
∗ 𝑎̄−𝑒

𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) + 𝑎̄−

∗ 𝑎̄+𝑒
−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)], 

The initial phases of the conjugate pair of oscillations (82) are taken into account by the complexity of the ampli-

tudes a+ and a–. Therefore, without loss of generality, we can set φ+ = φ– = 0, i.e. consider a+ and a– as real 

numbers. In this case, Ex. (86) take the form: 
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⟨𝑠𝑟⟩ =
1

√1− 
𝑟6
2

𝑟2

(𝑎−𝑎+ − 𝑎−𝑎+) = 0,                                                                                                        (89) 

⟨𝑠𝜃⟩ = 𝑖𝑟 [𝑎+𝑎−𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) − 𝑎−𝑎+𝑒

−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)], 

 

⟨𝑠𝜙⟩ = 𝑟 𝑠𝑖𝑛 𝜃 [𝑎−𝑎+𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) + 𝑎−𝑎+𝑒

−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)]. 

 
When the amplitudes of the forward and backward waves are equal, a+ = a–= а/4𝜋𝑟2, and also taking into account 

the formulas 

𝑐𝑜𝑠 𝑥 =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 ,        𝑠𝑖𝑛 𝑥 =

𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
                                                                                    (90) 

expressions (89) are simplified 
 
⟨𝑠𝑟⟩ = 0,                                                                                                                                         (91) 

 

⟨𝑠𝜃⟩ = − 
𝑎2

8𝜋2𝑟3
𝑠𝑖𝑛 [

4𝜋

𝜆
(𝑐𝑡 − 𝑟)] = − 

𝑎2

8𝜋2𝑟3
𝑠𝑖𝑛 [

4𝜋

𝜆
(𝑡𝜔 − 𝑘𝑟)], 

 

⟨𝑠𝜙⟩ =
𝑎2

8𝜋2𝑟3
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 [

4𝜋

𝜆
(𝑐𝑡 − 𝑟)] =

𝑎2

8𝜋2𝑟3
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠[2(𝑡𝜔 − 𝑘𝑟)]. 

 

It turns out that the spin vector of the wave vacuum disturbance ("photon") rotates in a plane perpendicular to 

the direction of its propagation, and the magnitude of this vector decreases with increasing distance r from the 

center of the core of the "electron". Thus, the end of the spin vector describes a spiral that converges as it 

approaches the core of the "electron". 
 

However, we have considered only one of the possible options. As an example, let’s consider another option, when 
the metric (27′) is represented as a determinant of the matrix 

(

 
 
𝑐𝑑𝑡 + 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙

1

√1− 
𝑟6
2

𝑟2

𝑑𝑟 + 𝑖𝑟𝑑𝜃

1

√1− 
𝑟6
2

𝑟2

𝑑𝑟 − 𝑖𝑟𝑑𝜃 𝑐𝑑𝑡 − 𝑟 𝑠𝑖𝑛 𝜃𝑑𝜙

)

 
 
.                                                                               (92) 

Performing operations similar to (84) – (84), we obtain 

⟨𝑠𝑟⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟))

(

 
 
 

0
1

√1− 
𝑟6
2

𝑟2

1

√1− 
𝑟6
2

𝑟2

0

)

 
 
 
(
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) =
1

√1 − 
𝑟6
𝑟

(𝑎̄−
∗ 𝑎̄+𝑒

−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) + 𝑎̄+

∗ 𝑎̄−𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)),      

⟨𝑠𝜃⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

0 𝑖𝑟

−𝑖𝑟 0
)(
𝑎̄+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = 𝑖𝑟 [𝑎̄+
∗ 𝑎̄−𝑒

𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) − 𝑎̄−

∗ 𝑎̄+𝑒
−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)],          (93) 

 

⟨𝑠𝜙⟩ = (𝑎̄+
∗ 𝑒𝑖

2𝜋
𝜆
(𝑐𝑡−𝑟) 𝑎̄−

∗ 𝑒−𝑖
2𝜋
𝜆
(𝑐𝑡−𝑟)) (

𝑟 𝑠𝑖𝑛 𝜃 0

0 −𝑟 𝑠𝑖𝑛 𝜃
)(
𝑎̄+𝑒

−𝑖
2𝜋
𝜆
(𝑐𝑡−𝑟)

𝑎̄−𝑒
𝑖
2𝜋
𝜆
(𝑐𝑡−𝑟)

) = 𝑟 𝑠𝑖𝑛 𝜃( 𝑎̄+
∗ 𝑎̄+ − 𝑎̄−

∗ 𝑎̄−). 

 
With similar simplifications we obtain the components of the spin vector of the “photon” in this case 
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⟨𝑠𝑟⟩ =
𝑎2

8𝜋2𝑟4
1

√1 − 
𝑟6
2

𝑟2

𝑐𝑜𝑠[2(𝑡𝜔 − 𝑘𝑟)],                                                                                                          (94) 

⟨𝑠𝜃⟩ = − 
𝑎2

8𝜋2𝑟3
𝑠𝑖𝑛 [

4𝜋

𝜆
(𝑐𝑡 − 𝑟)],              

 

⟨𝑠𝜙⟩ = 0. 

 

In order to fully describe the low-intensity interaction of a "photon" with the outer shell of a resting free valence 

"electron", it is necessary to consider all possible ways of representing the quadratic form (27′) as determinants 

of 22-matrices (i.e., Hermitian spin tensors) of type (83) and find the components of the "photon" spin vector 

for each of these cases. Then it is necessary to average the results obtained. 

 
 

4 Isospin of the core of a free valence “electron”  

 
We note once again that a quadratic form with any of the possible signatures from the ranks (21), presented in 

diagonal form, can be written in many ways as a determinant of a second-rank spin tensor, for example 
                                                                                                                                                                                               

𝑑𝑠(+)2 = 𝑔00𝑑𝑥
0𝑑𝑥0 − 𝑔11𝑥

1𝑑𝑥1 − 𝑔22𝑥
22𝑑𝑥22 − 𝑔33𝑥

3𝑑𝑥3 = (
у0𝑑𝑥

0 + у3𝑑𝑥
3 у1𝑑𝑥

1 + 𝑖у2𝑑𝑥
2

у1𝑑𝑥
1 − 𝑖у2𝑑𝑥

2 у0𝑑𝑥
0 − у3𝑑𝑥

3 )
𝑑𝑒𝑡

          (95) 

where  𝑦𝑖 = √𝑔𝑖𝑖  .  

 
This matrix can be represented as an A4 matrix 

                                                                                                                                                                                           

𝐴4
(+)
= (

у0𝑑𝑥
0 + у3𝑑𝑥

3 у1𝑑𝑥
1 + 𝑖у2𝑑𝑥

2

у1𝑑𝑥
1 − 𝑖у2𝑑𝑥

2 у0𝑑𝑥
0 − у3𝑑𝑥

3
) = у0𝑑𝑥

0 (
1 0
0 1

) − у1𝑑𝑥
1 (
0 −1
−1 0

) − у2𝑑𝑥
2 (
0 −𝑖
𝑖 0

) − у3𝑑𝑥
3 (
−1 0
0 1

),

  

(96) 

 

where    𝜎0
(+)
= (

1 0
0 1

),     𝜎1
(+)
= (

0 −1
−1 0

),     𝜎2
(+)
= (

0 −𝑖
𝑖 0

) ,    𝜎3
(+−−−)

= (
−1 0
0 1

)                             (97) 

 

is a set of Pauli matrices. 

 
Similarly, for a diagonalized quadratic form with the opposite signature (– + + +) we have one of the options for 

its representation as an A4 matrix: 
                                                                                                                                                                                            

𝑑𝑠(+)2 = −𝑔00𝑑𝑥
0𝑑𝑥0 + 𝑔11𝑑𝑥

1𝑑𝑥1 + 𝑔22𝑑𝑥
2𝑑𝑥0 + 𝑔33𝑑𝑥

0𝑑𝑥0 = (
у0𝑑𝑥

0 + у3𝑑𝑥
3 𝑖у1𝑑𝑥

1 + у2𝑑𝑥
2

𝑖у1𝑑𝑥
1 − у2𝑑𝑥

2 −у0𝑑𝑥
0 + у3𝑑𝑥

3)
𝑑𝑒𝑡

   

(98)

                                                                                                                                                                                              

𝐴4
(−)
= (

у0𝑑𝑥
0 + у3𝑑𝑥

3 𝑖у1𝑑𝑥
1 + у2𝑑𝑥

2

𝑖у1𝑑𝑥
1 − у2𝑑𝑥

2 −у0𝑑𝑥
0 + у3𝑑𝑥

3) = −у0𝑑𝑥
0 (
−1 0
0 1

) + у1𝑑𝑥
1 (
0 𝑖
𝑖 0

) + у2𝑑𝑥
2 (
0 1
−1 0

) + у3𝑑𝑥
3 (
1 0
0 1

),              

                                                                                                                                                                                                     

                                                                                                                                                    (99) 

where  𝜎0
(+)
= (

−1 0
0 1

),    𝜎1
(+)
= (

0 𝑖
𝑖 0

) ,    𝜎2
(+)
= (

0 1
−1 0

) ,    𝜎3
(+)
= (

1 0
0 1

)                                       (100) 

 

is a set of Cayley matrices. 

 

Let’s assume that all elements of length dxi are equal to one (dxi =1), then the A4 matrices (96) and (99) take 

the form 
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𝐴4
(+)
= (

у0 + у3 у1 + 𝑖у2
у1 − 𝑖у2 у0 − у3

) = (
у0 0
0 у0

) − (
0 −у1
−у1 0

) − (
0 −𝑖у2
𝑖у2 0

) − (
−у3 0
0 у3

),

                           

    (101) 

 

𝐴4
(−)
= (

у0 + у3 𝑖у1 + у2
𝑖у1 − у2 −у0 + у3

) = −(
−у0 0
0 у0

) + (
0 𝑖у1
𝑖у1 0

) + (
0 у2
−у2 0

) + (
у3 0
0 у3

).

                                 

 

 
As an example, we imagine the metric (6) 

 

𝑑𝑠1
(+𝑎)2

= (1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+ 
𝑟7
𝑟
− 
𝑟2

𝑟6
2)

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                        (102)         

 

determining the metric-dynamic state of the a-subcont in the core of the "electron", in the form of a spin-tensor 
determinant      

 

(

 
 
 
 
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 𝑐𝑑𝑡 − 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙 −

1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

𝑑𝑟 − 𝑖𝑟𝑑𝜃

−
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

𝑑𝑟 + 𝑖𝑟𝑑𝜃
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 𝑐𝑑𝑡 + 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙

)

 
 
 
 

𝑑𝑒𝑡

.                                                         (103) 

 

We write this spin tensor taking into account dxi =1 

 

(

 
 
 
 
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 − 𝑟 𝑠𝑖𝑛 𝜃 −

1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

− 𝑖𝑟

−
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

+ 𝑖𝑟
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 + 𝑟 𝑠𝑖𝑛 𝜃

)

 
 
 
 

.                                                                              (104) 

 
Note also that any binary event with probability of outcome ½ (e.g., a ball spinning clockwise or counterclockwise; 

a coin landing on heads or tails) can be described by spinors. For example, clockwise rotation is formally given by 
spinors (i.e., bra- and ket-vectors) 

                                                                                       

|𝑍 +⟩ = √
1

2
(
1
0
)    and    |𝑍 +⟩∗ = ⟨𝑍 +| = √

1

2
(1 0),                                                                             (105)   

 

such that  ⟨𝑍 + |𝑍 +⟩ =
1

2
(1 0) (

1
0
) =

1 

2
 .                 

 

In this case, counterclockwise rotation is formally given by spinors 

 

|𝑍 −⟩ = √
1

2
(
0
1
)    and   |𝑍 −⟩∗ = ⟨𝑍 −| = √

1

2
(0 1),                                                                              (106)   

  

such that  ⟨𝑍 − |𝑍 −⟩ =
1

2
(0 1) (

0
1
) =

1

2
 ,   

  
⟨𝑍 − |𝑍 +⟩ =

1

2
(0 1) (

1
0
) = 0.         
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Inside the core of the valence “electron” there are four layers (6) – (9), therefore, to study their isotopic rotation 

(isospin), we will use the following spinors 

                               

|𝑍 +⟩ = √
1

4
(
1
0
)     and    |𝑍 +⟩∗ = ⟨𝑍 +| = √

1

4
(1 0),                                                          

                  
(107)    

                                          
                               

|𝑍 −⟩ = √
1

4
(
0
1
)

 

    and    |𝑍 −⟩∗ = ⟨𝑍 −| = √
1

4
(0 1).                                                                            (108)       

 

Using the spintensor (104) and spinors (107), we determine the 4-vector of isospin of the α-subcont 
 

⟨𝑠(+𝑎)⟩ = √
1

4
(1 0)

(

 
 
 
 
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 − 𝑟 𝑠𝑖𝑛 𝜃 −

1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

− 𝑖𝑟

−
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

+ 𝑖𝑟
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 + 𝑟 𝑠𝑖𝑛 𝜃

)

 
 
 
 

√
1

4
(
1
0
) =

                         

                 (109)       

 

=
1

4
(1 0)

(

 
 
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 0

0
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2)

 
 
(
1
0
) +

1

4
(1 0)

(

 
 
 
 

0 −
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

−
1

√1−
𝑟7
𝑟
+
𝑟2

𝑟6
2

0
)

 
 
 
 

(
1
0
) +

1

4
(1 0) (

0 −𝑖𝑟
𝑖𝑟 0

) (
1
0
) +

+
1

4
(1 0) (

−𝑟 𝑠𝑖𝑛 𝜃 0
0 𝑟 𝑠𝑖𝑛 𝜃

) (
1
0
) 

   

 

 

 
with components  

 

  

𝑠𝑡
(+𝑎)

=
1

4
(1 0)

(

 
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 0

0 √1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2)

 (
1
0
) =

1

4
√1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2 ,                                                      (110)       

   

𝑠𝑟
(+𝑎)

=
1

4
(1 0)

(

 
 
 
 

0 −
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

−
1

√1+
𝑟7
𝑟
−
𝑟2

𝑟6
2

0
)

 
 
 
 

(
1
0
) = 0,                                                                           

    

𝑠𝜃
(+𝑎)

=
1

4
(1 0) (

0 −𝑖𝑟
𝑖𝑟 0

) (
1
0
) = 0,    

                                                                                                       

 

𝑠𝜙
(+𝑎)

=
1

4
(1 0) (

−𝑟 𝑠𝑖𝑛 𝜃 0
0 𝑟 𝑠𝑖𝑛 𝜃

) (
1
0
) = −

1

4
𝑟 𝑠𝑖𝑛 𝜃.                                                                           

  

 
Similarly, the 4-vectors of isospin are defined: 
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- b-subcont [for metric (7)] 

 

  

𝑠𝑡
(+𝑏)

=
1

4
√1 −

𝑟7

𝑟
+
𝑟2

𝑟6
2,

    

𝑠𝑟
(+𝑏)

= 0,    𝑠𝜃
(+𝑏)

= 0,    𝑠𝜙
(+𝑏)

= −
1

4
𝑟 𝑠𝑖𝑛 𝜃 ;

          

                                                                              

                                              

 

 
- c-subcont [for metric (8)] 

 

  

𝑠𝑡
(+𝑐)

=
1

4
√1 +

𝑟7

𝑟
+
𝑟2

𝑟6
2,

     

𝑠𝑟
(+𝑐)

= 0,     𝑠𝜃
(+𝑐)

= 0,     𝑠𝜙
(+𝑐)

= −
1

4
𝑟 𝑠𝑖𝑛 𝜃 ;

        

                                     

                                                                                                                                                                                    

                                              

  

- d-subcont [for metric (9)] 

 

  

𝑠𝑡
(+𝑏)

=
1

4
√1 −

𝑟7

𝑟
−
𝑟2

𝑟6
2,

     

𝑠𝑟
(+𝑑)

= 0,     𝑠𝜃
(+𝑑)

= 0,     𝑠𝜙
(+𝑑)

= −
1

4
𝑟 𝑠𝑖𝑛 𝜃.

                                            

                                                                                                                                                                                    

                                              

  

 
The components of the general isospin vector of the subcont in the core of the "electron" are equal 

to                                                                                                                                                                                                        

                                                                                                                                                                                                      
                                                                                                                                                   (111) 

𝑠𝑡
(+)
=
1

4
√𝑠𝑡

(+𝑎)2
+ 𝑠𝑡

(+𝑏)2
+ 𝑠𝑡

(+𝑐)2
+ 𝑠𝑡

(+𝑑)2
=
1

4
√(1 +

𝑟7

𝑟
−
𝑟2

𝑟6
2) + (1 −

𝑟7

𝑟
+
𝑟2

𝑟6
2) + (1 +

𝑟7

𝑟
+
𝑟2

𝑟6
2) + (1 −

𝑟7

𝑟
−
𝑟2

𝑟6
2) =

√4

4
=
1

2
 ,  

 

𝑠𝑟
(+)
= 0,    𝑠𝜃

(+)
= 0,   𝑠𝜙

(+)
= √𝑠𝜙

(+𝑎)2
+ 𝑠𝜙

(+𝑏)2
+ 𝑠𝜙

(+𝑐)2
+ 𝑠𝜙

(+𝑑)2
=
1

4
√4𝑟2 𝑠𝑖𝑛2 𝜃 =

1

2
𝑟 𝑠𝑖𝑛 𝜃.  

 

Another type of isotopic rotation is possible, which is formally given by complex spinors 
                                                                               

|𝑌 +⟩ = √
1

4
(
𝑖
0
)    and    |𝑌 +⟩∗ = ⟨𝑌 +| = √

1

4
(𝑖 0),                                                                              (112)     

 

|𝑌 −⟩ = √
1

4
(
0
𝑖
)    and    |𝑌 −⟩∗ = ⟨𝑌 −| = √

1

4
(0 𝑖),                                                                              (113)     

 

such that   ⟨𝑌 + |𝑌 +⟩ =
1

4
(𝑖 0) (

𝑖
0
) = −

1

4
 ,    ⟨𝑌 − |𝑌 −⟩ =

1

4
(0  𝑖) (

0
𝑖
) = −

1

4
 .  

 
In this case, with a similar use of the spin tensor (104), the components of the general 4-vector of the isospin of 

the subcont in the core of the “electron” are equal to 
        

𝑠𝑡
(+)
= −

1

2
 ,   𝑠𝑟

(+)
= 0,   𝑠𝜃

(+)
= 0,    𝑠𝜙

(+) =
1

2
𝑟 𝑠𝑖𝑛 𝜃.                                                                      (114) 

 
Results (111) and (114) turned out to be analogous to the spin quantum number of classical quantum mechanics 

s = ±½. However, this is only the beginning of the study of the isospin properties of the diagonal quadratic form 
of type (6) or (102). 

 
Within the framework of the Algebra of signature, the metric (102) can be represented as the sum of seven sub-

metrics from the left rank in Ex. (23) with signatures from the left rank (21): 
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  𝑑𝑠(+)2 = (1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

+ 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 –            – a1- subcont, (+  +  +  +)    (115)    

            

−(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

− 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +          – a2-subcont (–  –  –  +)        (116)    

  

          

+(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

− 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2–            – a3-subcont, (+  –  –  +)      (117)    

            

−(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

+ 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +          – a4-subcont, (–  –  + – )       (118)   

            

+(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

− 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 –           – a5-subcont, (+  +  –  –)      (119)   

            

−(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

− 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +           – a6-subcont, (–  +  –  –)      (120)   

            

+(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1+
𝑟7
𝑟
−
𝑟2

𝑟6
2)

+ 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.            – a7-subcont,  (+  –  +  –)      (121)   

 

Let’s consider only one of the seven terms of this expression, for example, (118) with the signature (– – + –) (the 
remaining terms of this expression are described similarly). 

 

As already noted above, the sub-metric (118) (of the form 𝑠(−−+−)2 = −у0
2 − у1

2 + у2
2 − у3

2) can be represented as 

the determinant of one of the 𝐴4
𝑘(−−+−)

-matrices: 
 

(
−𝑦0 + 𝑖𝑦3 𝑦1 + 𝑦2
−𝑦1 + 𝑦2 𝑦0 + 𝑖𝑦3

)   (
𝑦0 + 𝑖𝑦3 𝑦1 + 𝑦2
−𝑦1 + 𝑦2 −𝑦0 + 𝑖𝑦3

)   (
−𝑦0 + 𝑖𝑦3 −𝑦1 + 𝑦2
𝑦1 + 𝑦2 𝑦0 + 𝑖𝑦3

)   (
𝑦0 + 𝑖𝑦3 −𝑦1 + 𝑦2
𝑦1 + 𝑦2 −𝑦0 + 𝑖𝑦3

)                                     (122) 

 

(
𝑦1 + 𝑦2 −𝑦0 + 𝑖𝑦3
𝑦0 + 𝑖𝑦3 −𝑦1 + 𝑦2

)   (
𝑦1 + 𝑦2 𝑦0 + 𝑖𝑦3
−𝑦0 + 𝑖𝑦3 −𝑦1 + 𝑦2

)   (
−𝑦1 + 𝑦2 −𝑦0 + 𝑖𝑦3
𝑦0 + 𝑖𝑦3 𝑦1 + 𝑦2

)   (
−𝑦1 + 𝑦2 𝑦0 + 𝑖𝑦3
−𝑦0 + 𝑖𝑦3 𝑦1 + 𝑦2

)    

 

(
−𝑦0 + 𝑖𝑦1 𝑦3 + 𝑦2
−𝑦3 + 𝑦2 𝑦0 + 𝑖𝑦1

)   (
𝑦0 + 𝑖𝑦1 𝑦3 + 𝑦2
−𝑦3 + 𝑦2 −𝑦0 + 𝑖𝑦1

)   (
−𝑦0 + 𝑖𝑦1 −𝑦3 + 𝑦2
𝑦3 + 𝑦2 𝑦0 + 𝑖𝑦1

)    (
𝑦0 + 𝑖𝑦1 −𝑦3 + 𝑦2
𝑦3 + 𝑦2 −𝑦0 + 𝑖𝑦1

)    

 

(
𝑦3 + 𝑦2 −𝑦0 + 𝑖𝑦1
𝑦0 + 𝑖𝑦1 −𝑦3 + 𝑦2

)   (
𝑦3 + 𝑦2 𝑦0 + 𝑖𝑦1
−𝑦0 + 𝑖𝑦1 −𝑦3 + 𝑦2

)   (
−𝑦3 + 𝑦2 −𝑦0 + 𝑖𝑦1
𝑦0 + 𝑖𝑦1 𝑦3 + 𝑦2

)   (
−𝑦3 + 𝑦2 𝑦0 + 𝑖𝑦1
−𝑦0 + 𝑖𝑦1 𝑦3 + 𝑦2

)     

                                  …                                          …                                         …                                      … 

(
𝑦0 + 𝑦2 −𝑦1 + 𝑖𝑦3
𝑦1 + 𝑖𝑦3 −𝑦0 + 𝑦2

)   (
𝑦0 + 𝑦2 𝑦1 + 𝑖𝑦3
−𝑦1 + 𝑖𝑦3 −𝑦0 + 𝑦2

)  (
−𝑦0 + 𝑦2 −𝑦1 + 𝑖𝑦3
𝑦1 + 𝑖𝑦3 𝑦0 + 𝑦2

)     (
−𝑦0 + 𝑦2 𝑦1 + 𝑖𝑦3
−𝑦1 + 𝑖𝑦3 𝑦0 + 𝑦2

)    

                                                                                                                                                                                       

 где   𝑦0 = √(1 +
𝑟7

𝑟
−
𝑟2

𝑟6
2) 𝑐𝑑𝑡,      𝑦1 =

𝑑𝑟

√(1 + 
𝑟7
𝑟
 − 
𝑟2

𝑟6
2)

,      𝑦2 = 𝑟𝑑𝜃,       𝑦3 = 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙.                                                      

 

If we assume that each of the 𝐴4
𝑘(−−+−)

-matrices (122) is realized with some probability 𝑐𝑘
2 (t) (which can change 

with time t), then the average 𝐴4
𝑘(−−+−)

-matrix can be represented as 

 

𝐴4
(−−+−)

= 𝑐1
2(𝑡)𝐴4

1(−∓−) + 𝑐2
2(𝑡)𝐴4

2(−∓−) + 𝑐3
2(𝑡)𝐴4

3(−∓−)+. . . +𝑐𝑛
2(𝑡)𝐴4

𝑛(−∓−),                                               (123)   

 

or

   

𝐴4
(−−+−)

= ∑ 𝑐𝑘
2(𝑡)𝐴4

𝑘(−−+−)𝑛
𝑘=1 ,   where    ∑ 𝑐𝑖

2(𝑡) = 1𝑛
𝑖=1 .                                                                (124)   

In the simplest case, when all 𝑐𝑘
2 = 1/n, Ex. (124) takes the form 
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𝐴4
(−−+−)

=
1

𝑛
∑ 𝐴4

𝑖(−−+−)𝑛
𝑖=1 .                                                                                                                (125)   

 

Some characteristics of the random processes under consideration can be obtained on the basis of spin-tensor 

analysis 
 

𝑠4
(−−+−)

= ⟨𝜓1|𝐴4
1(−−+−)|𝜓1⟩ + ⟨𝜓2|𝐴4

2(−−+−)|𝜓2⟩ + ⟨𝜓3|𝐴4
3(−−+−)|𝜓3⟩+. . . +⟨𝜓т|𝐴4

𝑛(−−+−)|𝜓т⟩,
                       

(126)                                                                                                                                            

 

where the "bra" and "ket" vectors have the form 
 

⟨𝜓𝑘| = (с̄𝑘(𝑡), 0) = с̄𝑘(𝑡)(1  0)          |𝜓𝑖⟩ = (
с𝑘(𝑡)
0
) = с𝑘(𝑡) (

1
0
),

                                                           

(127)   

 

and / or  
 

⟨𝜓𝑖| = (𝑖с̄𝑘(𝑡), 0) = с̄𝑘(𝑡)(𝑖  0)        |𝜓𝑖⟩ = (
𝑖с𝑘(𝑡)
0

) = с𝑘(𝑡) (
𝑖
0
),

                                                            

(128)  

 
where с𝑘(𝑡) and с̄𝑘(𝑡) are complex conjugate probability amplitudes. 

 
The chaotic fluctuations of all sub-layers (115) – (121) and layers (6) – (9) of the subcont inside the core of the 

“electron” can be described similarly. 
 

A separate study, which is beyond the scope of this paper, should be devoted to the probabilistic description of 

intra-vacuum fluctuations. However, we note that all metrics and linear forms with which the Signature Algebra 

operates in this study are only the result of averaging extremely complex and intricate distortions of the -12,-15-

vacuum layers, sub-layers and sub-sub-layers … and interweaving of subcont currents (see Figure 1). 

 
 

5 Infinite "electron" (continued) 
 

In the previous paragraphs, the free valence "electron" was investigated as a result of elastic-plastic deformation 

of the outer side of the -12,-15-vacuum. It was already noted that the valence "electron" is a kind of initial skeleton 

of this, on average, stable spherical vacuum formation. 
 

Each solution metric (2) – (10) can be represented as a sum of seven similar sub-metrics with signatures from the 
left-hand side of the ranking expression (21) or (23). Each sub-metric can also be represented as a sum of seven 

similar sub-sub-metrics and this can continue ad infinitum. 
 

In §2.8.3 in (Batanov-Gaukhman, 2023e), each metric with the corresponding signature was conditionally assigned 

a color. The additive superposition of metrics with different signatures essentially means that their geodesic lines 
(i.e. color currents) are intertwined into bundles. The color dynamics of intertwined vacuum layers was described 

in the papers (Batanov-Gaukhman, 2023d, 2023e). 
 

In the theory developed here, the "electron" is infinite, but this infinity is discrete and self-similar (i.e. all layers of 

the m,n-vacuum are similar to each other), therefore they are accessible for the deepest study by the mathematical 

methods of the Algebra of Signatures (Batanov-Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f). 
 

Note that, in turn, the geometrized mathematical apparatus of the Algebra of Signatures is based on the Algorithms 
for revealing the Great Name of the GOD Yud-Key-Vav-Key (TETRAGRAMATON) (Gaukhman, 2007). 
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6 The raqiya of a free valence "electron" 2 
 

The raqiya of "electron" is a complex curved region of -12,-15-vacuum adjacent to the abyss-crack surrounding its 

core (see Figures 1 and 8). The space of an average stable spherical vacuum formation (in particular, the "electron") 
is formed under the influence of two main factors. 
 

First, the -12,-15-vacuum in the region of the "electron" space is stretched so much that its radial elongation to 

infinity occurs due to an increase in the brokenness and twisting of the radial lines (see §1.2.2 and §5.2 in (Ba-

tanov-Gaukhman, 2023e)). In this case, in the region of the "electron" space, the radial subcont currents change 

from laminar to turbulent flow (see Figure 18). 

 
Secondly, the raqiya of the "electron" is perceived as a multilayer and multilevel spherical abyss-crack (i.e. a 

spherical rupture of the -12,-15-vacuum) between the "electron" core and its outer shell (Figure 8). 
 

In §4.11 in (Batanov-Gaukhman, 2023f) it is shown that in the raqiya of "electron" there are 24 spherical layers 

(among them 12 outer layers and 12 inner layers), which are connected with all spherical formations inside of 

which the "electron" core is located, in this case with the "Universe" with a radius of r2 ~ 1029 cm, and with all 

spherical formations that are inside the "electron" core, in this case with the proto-quark with a radius of                                

r7 ~ 10–24 cm. 
 

Today, the radius of the observable "Universe" is a very large value (r2 ~ 1029 cm), therefore in §1.1 we neglected 

the terms 𝑟2 𝑟2
2⁄  in the metrics (2) – (10). However, if we adhere to the opinion of cosmologists that the Universe 

is gradually expanding, then it is possible that the radius of the "Universe" was small. In this case, a spherical 

layer associated with the young "Universe" should have been noticeably manifested in the "electron's" raqiya. This 

could affect the properties of the "electron". That is, it is necessary to keep in mind that the "electron" could 
change during the evolution of the "Universe". 

 
 

7 Rotation of the nucleus of a free valence "electron" 
 

The core of any vacuum formation, including the core of an "electron", rotates relative to an outside observer (i.e., 

an observer located on the side of its outer shell), see Figure 12. At the same time, for an observer located inside 
the rotating core, this rotation may be practically unnoticeable. 

 

 
 

Fig. 12: The rotation of the “electron” core has two components: 1) rotation around the instantaneous axis, and  
2) chaotic change in the direction of the rotation axis itself 
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Rotation of the core of a vacuum formation (in particular, the core of the "electron") is an extremely complex 

phenomenon that requires a separate extensive study. In this paper, only possible directions of these studies are 

outlined at the level of qualitative consideration. 
 

First of all, we note that each point of each of the 4 transverse layers (n-subconts), which is on the periphery of 

the core of the "electron" (i.e. at r ≈ r6) should move with a speed close to the speed of light vr
(+) ≈ vτ

(+) ≈ c (see 

Exs. (68) – (71)), despite the fact that the total speed of the subcont (74) is zero on average. Motion with the 

speed of light is a condition for the existence of n-subconts on the edge of the abyss-crack (i.e. the spherical 

boundary between the core and the outer shell of the "electron" (see Figures 1 and 8).  
 

Such a rotational motion of the periphery of the core can be qualitatively described as follows. If the surface of 

the "electron" core rotated like a solid sphere, then the speed of movement of points located on its equator vre
(+) 

would be maximum, i.e. close to the speed of light (vre
(+) ≈ с), while the speed of other points on this sphere would 

be noticeably less (vr
(+) с) (see Figure 13), and equal to zero at the poles. 

 
In order for the speed of non-equatorial points on the surface of the core to also be close to the speed of light, in 

addition to the rotational motion with the entire sphere as a whole, they must also participate in one or several 

surface rotational motions: cyclones or anticyclones (see Figures 13) with an additional speed vrc
(+), so that                         

vr
(+) + vrc

(+) ≈ c. 
 

 
 

Fig. 13: Cyclones and anticyclones on the surface of the rotating core of a vacuum formation  
(in particular, an “electron”) are similar to the circulation of air on the surface of a planet 

 

 

On the surface of the sphere under consideration (see Figure 13) there are still two points: the "north" and "south" 

poles, which do not participate in the rotational motion at all. But due to the boundary condition, they must also 
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move at a speed close to the speed of light. Therefore, the axis of rotation of the "electron" core, passing through 

these poles, must also constantly move chaotically (i.e. change direction) at the speed of light. 

 
As a result of the superposition of several of the above-mentioned reasons, the points located in the peripheral 

layer of the "electron" core must participate in an extremely complex surface motion, so that at the edge of the 
abyss-crack each point moves with a speed close to the speed of light. In this case, the instantaneous axis of 

rotation of the entire core as a whole must constantly shift along a practically chaotic trajectory (see Figures 8 
and 13). 

 

Initially, it is unknown in which direction the "electron" core rotates, but it is known that there are only two such 
possibilities: "clockwise" and "counterclockwise", and the probability of any of these rotation directions is ½ (see 

§4). Due to the chaotic shift of the axis of rotation of the "electron", for any given direction it coincides with this 
direction part of the time, and the other equal part of the time this axis is oppositely directed. Therefore, the core 

of a free, stationary “electron” has an intrinsic angular momentum for any direction that is, on average, equal to 

zero. 
 

Different longitudinal and transverse layers of the "electron" core move with different speeds (68) – (71) depend-

ing on the distance from its center r. If on the periphery of the core all four transverse layers of the subcont on 

average move practically only along the surface of a sphere with radius r6, then as they approach the inner 

nucleolus the flow of the four intertwined layers of the subcont becomes more and more radial (see Figure 9). 

However, near the inner nucleolus these currents again wind up on the core of the "proto-quark" with radius r7. 
 

Therefore, the projections of the velocities of the transverse layers of the subcont onto the surfaces of spheres 

with different radii r6 > r > r7  will be different. Because of this, the longitudinal layers of the "electron" core are 

also different (Figure 9). 
 

We consider some aspects concerning the complex processes of subcont 
rotation in the "electron" core. 

 

Let the point M, located at a distance r from the center of the "electron" 

core (i.e. between two raqiya r6 > r > r7), move around the instantaneous 

axis of rotation with a linear velocity (see Figure 13) (Chelnokov, 2006) 
 

v = ω×r,                                                                                          (129)   

 

where ω = e dφ/dt                                                                           (130)    

 

is angular velocity of rotation of the core (e is a unit vector directed along 

the instantaneous axis of rotation). 

 

Let the reference frame х1, х2, х3 (see Figure 14) remain motionless, and 

the system у1, у2, у3 “chaotically” change its directions together with the 

instantaneous axis of rotation of the core of the “electron”. 

 
The coordinate axes of the reference and shifting reference frames in this case are related to each other by a 

system of three linear equations 

 

уα = βα1(t) х1 + βα2(t) х2 + βα3(t) х3 ,                                                                                                                (131) 

 

where βαk(t) (α,k = 1,2,3) is direction cosines, which are random functions of time. 

 
Fig. 14: Determination of angular  

velocity of rotation (Chelnokov, 2006) 
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Let’s differentiate Eqs. (131) (Chelnokov, 2006) 
 

 
𝑑𝑦𝑎

𝑑𝑡
= ∑

𝑑𝛽𝑎𝑘(𝑡)

𝑑𝑡
𝑥𝑘

3
𝑘=1 = 𝜔(𝑡) × 𝑦𝑎 = (

𝑥1 𝑥2 𝑥3
𝜔1(𝑡) 𝜔2(𝑡) 𝜔3(𝑡)

𝛽𝑎1(𝑡) 𝛽𝑎2(𝑡) 𝛽𝑎3(𝑡)
),                                                            (132) 

 

where ωα(t) is the instantaneous value of the projection of the angular velocity vector ω(t) onto the axes of the 

reference frame х1, х2, х3  at time t. 
 

Equating the coefficients at the unit vectors хk, from equation (132) we obtain a system of equations for the rates 

of change of the direction cosines 
    

dβα1/dt = βα1
• = ω2βα3 – ω3βα2,                                                                                                                       (133) 

  

dβα2/dt = βαβ
• = ω3βα1 – ω1βα3,                                                                                                         (134)   

 

dβα3/dt = βα3
•  = ω1βαβ – ω2βα1,                                                                                                                                                                                         (135)   

 

which can be represented in matrix form (Chelnokov, 2006) 
 

(

𝛽𝛼1
•

𝛽𝛼2
•

𝛽𝛼3
•
) = (

0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

)(

𝛽𝛼1
𝛽𝛼2
𝛽𝛼3

).                                                                                               (136)   

 
Combining the three matrix equations into one, we obtain the Poisson matrix kinematic equation (Chelnokov, 

2006) 

(

𝛽11
• 𝛽21

• 𝛽31
•

𝛽12
• 𝛽22

• 𝛽32
•

𝛽13
• 𝛽23

• 𝛽33
•
) = (

0 −𝜔3(𝑡) 𝜔2(𝑡)

𝜔3(𝑡) 0 −𝜔1(𝑡)

−𝜔2(𝑡) 𝜔1(𝑡) 0

)(

𝛽11 𝛽21 𝛽31
𝛽12 𝛽22 𝛽32
𝛽13 𝛽23 𝛽33

).                                                    (137) 

 

which determines the displacement of point M along a sphere with radius r. 
 
According to expressions (68) – (71), the velocities of the intra-vacuum layers in the core of the “electron” relative 

to the observer located inside the given core are equal to 
 

vr
(+a)(r) = c(– r7/r + r2/r6

2)1/2     – a-subcont velocity;                                                                              (138) 

vr
(+b)(r) = c(r7/r – r2/r6

2)1/2       – b-subcont velocity;                                                                                                 

vr
(+c)(r) = c(– r7/r – r2/r6

2)1/2     – c-subcont velocity;                                                                                                 

vr
(+d)(r) = c(r7/r + r2/r6

2)1/2       – d -subcont velocity.                                                                                                  

 
However, relative to an observer located outside the rotating (relative to him) core of the “electron”, these ve-
locities are decomposed into radial vrr

 (–m)(r) and tangential vrt
(–m)(r) components  

 

vr
(+a)(r) = vrr

 (+a )(r) + vrt 
(+a)(r),                                                                                                                                        (139) 

vr
(+b)(r) = vrr

 (+b)(r) + vrt 
(+b)(r),                                                                                                                                         (140)                   

vr
(+c)(r) = vrr

 (+c)(r) + vrt 
(+c)(r),                                                                                                           (141)               

vr
(+c)(r) = vrr

 (+c)(r) + vrt 
(+c)(r).                                                                                                               (142) 



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman 

 

56 

 

In this case, the tangential component of the velocity of each intra-vacuum layer can be estimated by the expression  

                                                      

vrτ
 (+m)(r) ≈ ω(t)×s(+m),                                                                                                                           (143) 

 

where s(+m)  is the spatial isospin vector of the m-th intra-vacuum layer. 

 
For example, the tangential component of the velocity of the a-subcont inside the nucleus of the "electron" is 

approximately equal to 

 

vrτ
 (+a)(r) ≈ ω(t)×s(+a),                                                                                                                            (144) 

 

where s(+а)  is the spatial isospin vector of the a-subcont with components (111): 

 

𝑠𝑟
(−𝑎)

= 0,      𝑠𝜃
(−𝑎)

= 0,      𝑠𝜙
(−𝑎)

= −
1

2
𝑟 𝑠𝑖𝑛 𝜃.                                                                        (145) 

 
From expression (139), considering the components of the isospin vector (145), we obtain an estimate of the 

modulus of the instantaneous value of the tangential component of the velocity of the a-subcont between two 

raqiya of the core of the "electron" (r6 > r> r7) 

 

|vrτ
(+а)(r)| ≈  ½ r sinθ [ω1(t)2 + ω2(t)2]½,                                                                                             (146) 

 

provided that on the periphery of the core with radius r6 

 

|vrτ
(+а)(r6)| ≈  ½ r6 sin θ [ω1(t)2 + ω2(t)2]½ = с,                                                                                      (147) 

 

and in the region of the inner nucleolus with radius r7  the condition is satisfied 

 

||vrτ
(+а)( r7)| ≈  ½ r7 sin θ [ω1(t)2 + ω2(t)2]½ = с.                                                                                    (148) 

 
From expression (139) it follows that the radial component of the velocity of the a-subcont inside the nucleus of 

the “electron” is approximately equal to 

 
vrr

 (–a )(r) ≈ vr
(–a)(r) – vrτ

(–a)(r) ≈ c(– r7/r + r2/r6
2)1/2  –  ½r sin θ [ω1(t)2 + ω2(t)2]½.                                     (149) 

 
Based on the same analysis of the remaining expressions (140) – (142), the tangential and radial components of 

the velocities of the b-subcont, c-subcont and d-subcont inside the core of the "electron" can be obtained. 
 

Once again, we note that this section does not contain complete solutions to the problems posed. Here, only the 

ways of describing the rotation of the core of a spherical vacuum formation, in particular the core of the "electron", 
are outlined. A separate, extensive study should be devoted to the rotation of various longitudinal and transverse 

layers of the core of a spherical vacuum formation. 
 

8 Connection with quantum mechanics. Chaotic behavior of the core of the "electron" and its inner 

nucleolus 
 

Before this paragraph, we considered the average stable metric-dynamic structure of a free valence "electron" 
based on the methods of differential geometry and the mathematical apparatus of the Algebra of signature. It 

turned out that in any stable spherical vacuum formation (in particular, in the "electron"), one can distinguish a 
core and an inner nucleolus (see Figures 1 and 8). 
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In reality, the vacuum, like an elastic-plastic continuous medium, constantly and everywhere chaotically trembles, 

seethes and distorts. The stable metric-dynamic structure of any spherical vacuum formation (in particular, the 

"electron") is only the result of simplification and averaging of complex vacuum fluctuations. 
 

Chaotic vacuum deformations and curvatures need to be studied separately, but in this section, we will simplify the 

task. Let’s assume that the core of the “electron” (with a radius of r6 ~ 10–13 cm) and the inner nucleolus (with a radius 

of r7 ~ 10–24 cm) are separate particles that, under the influence of complex vacuum fluctuations, wander chaotically 

in the vicinity of a certain central point (i.e., the center of the stochastic system, Figure 15). This approach largely 

coincides with the initial provisions of Nelson’s stochastic quantum mechanics (Nelson, 1966; 1967; 1985). 
 

 
 

Fig. 15: Chaotically wandering core of the "electron", inside which  
the inner nucleolus wanders chaotically too 

 
 

Chaotic vacuum deformations and curvatures should be studied separately, but in this section we will simplify the 

task. We assume that the core of the "electron" (with a radius of r6 ~ 10–13cm) and the inner nucleolus (with a 

radius of r7 ~ 10–24 cm) are separate particles that, under the influence of complex vacuum fluctuations, wander 

chaotically in the vicinity of a certain central point (i.e., the center of the stochastic system, Figure 15). This 
approach largely coincides with the initial provisions of stochastic quantum mechanics by Edward Nelson (Nelson, 

1966; 1967; 1985). 

 
It is more correct to consider the joint chaotic behavior of the core of the "electron" and its inner nucleolus. That 

is, to study the core of the “electron” as a chaotically wandering particle with a constantly chaotically shifting 
geometric center (i.e. its center of inertia). 

 

We deliberately avoid using the concept of the "center of mass" of a particle, since there is no mass in geometrized 
vacuum physics. Stable vacuum formations are only stable deformations revealed from the seething vacuum by 
averaging its fluctuations. 
 
However, we will simplify the problem even more and consider the nucleus of the "electron" as a small structure-

less particle (with a radius r6 ~10–1cm), which wanders chaotically in a much larger seething region of vacuum 

with a characteristic size of the order of ra ~ 10–10 cm. 

 

The chaotic behavior of the nucleolus (i.e. the nucleus of the "proto-quark") inside the nucleus of the "electron" 
has already been partially considered in §4.9 in (Batanov-Gaukhman, 2023f). 
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In the same way as it was done in §4.9 in (Batanov-Gaukhman, 2023f) for the inner nucleolus, for the “electron” core 

in the stationary case one can write the functional of the average efficiency of the stochastic system (144) in (Batanov-

Gaukhman, 2023f) (for a more detailed consideration of this random process see (Batanov-Gaukhman, 2024), 
 

𝑤 = ∫ ∫ ∫ (−
𝜂𝑟
2

2
𝜓(𝑥, 𝑦, 𝑧)∇2𝜓(𝑥, 𝑦, 𝑧) + 𝜓2(𝑥, 𝑦, 𝑧)[< 𝑢(𝑥, 𝑦, 𝑧) > −< 𝜀(𝑥, 𝑦, 𝑧) >]) 𝑑𝑥𝑑𝑦𝑑𝑧.

∞

−∞

∞

−∞

∞

−∞
                    

 
The condition for finding the extremal of this functional is the stationary Schrödinger-Euler-Poisson equation (Ba-

tanov-Gaukhman, 2024) 
 

−
3𝜂𝑟
2

2
{
𝜕2𝜓(𝑥,𝑦,𝑧)

𝜕𝑥2
+
𝜕2𝜓(𝑥,𝑦,𝑧)

𝜕𝑦2
+
𝜕2𝜓(𝑥,𝑦,𝑧)

𝜕𝑧2
} + 2[< 𝑢(𝑥, 𝑦, 𝑧) > − < 𝜀(𝑥, 𝑦, 𝑧) >]𝜓(𝑥, 𝑦, 𝑧) = 0,

 

                          (150)      

 

where  𝜂𝑟 =
2𝜎𝑟

2

𝜏𝑟𝑐𝑜𝑟
 ,      

here  𝜎𝑟 =
1

√3
√𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2

 
                                                                                                           (151) 

 

is standard deviation of random 3-dimensional trajectory of chaotically wandering core of “electron” relative to 
conditional center of the considered stochastic system (see Figure 15); 

 

𝜏𝑟𝑐𝑜𝑟 =
1

3
(𝜏𝑥𝑐𝑜𝑟 + 𝜏𝑦𝑐𝑜𝑟 + 𝜏𝑧𝑐𝑜𝑟)                                                                                                         (152) 

 
is autocorrelation interval of the given 3-dimensional stationary random process. 

 
In non-stationary cases the efficiency functional of the given stochastic system takes the form (see (59) in (Ba-

tanov-Gaukhman, 2024)                                                                                                                                                                                                                                                

                                                                                                                                                   (153)   

< 𝑠𝑟(𝑡) >= ∫ ∫ ∫ ∫ (−
𝜂𝑟
2

2
𝜓(𝑟, 𝑡)∇2𝜓(𝑟) + [< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >]𝜓

2(𝑟, 𝑡)  ± 𝑖
𝜂𝑟
2

𝐷
𝜓(𝑟, 𝑡)

𝜕𝜓(𝑟,𝑡)

𝜕𝑡
)

∞

−∞

∞

−∞

∞

−∞

𝑡2
𝑡1

𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡. 

 
To find the extremal of this functional is the time-dependent Schrödinger-Euler-Poisson equation (67) in (Batanov-

Gaukhman, 2024) 
 

±𝑖
𝜂𝑟
2

𝐷

𝜕𝜓(𝑟,𝑡)

𝜕𝑡
= −

3𝜂𝑟
2

2
∇2𝜓(𝑟, 𝑡)+ 2[< 𝑢(𝑟, 𝑡) > − < 𝜀(𝑟, 𝑡0) >]𝜓(𝑟, 𝑡).

                                                       
(154) 

In other words, the average behavior of a chaotically wandering core of an "electron" under certain conditions 
(see (Batanov-Gaukhman, 2024)) is described by the equations of quantum mechanics. The stochastic Schrö-

dinger-Euler-Poisson equations (150) and (154) coincide with the corresponding Schrödinger equations up to a 
constant coefficient 𝜂𝑟. 
 
Moreover, taking into account in the article (Batanov-Gaukhman, 2024) two fundamental principles at once: "Min-

imum action" and "Maximum entropy" in one efficiency functional of the form (153), allows us to obtain for a 
stochastic system of the "chaotically wandering particle" type not only differential equations of the Schrödinger 

equation type, but also other stochastic equations depending on the initial conditions, for example, the self-diffu-
sion equation (see equation (73) in (Batanov-Gaukhman, 2024)), etc. 

 

In general, the variational method proposed in the article (Batanov-Gaukhman, 2024) allows us to obtain equations 
describing quantum and non-quantum stochastic systems of any scale (such as chaotically wandering core or 

nuclei: "proto-quark", "electron", "biological cell", "planet", "star", "galaxy", etc.). In this case, there are no 
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deviations from ordinary empirical expectations and classical logic, and it is also possible to do without involving 

hypothetical de Broglie waves that are not observed in experiments. 
 

Without involving the hypothesis of de Broglie waves, it is also possible to explain the results of an experiment on 

the diffraction of microparticles (in particular, electrons) on a crystal. 
 

Using the usual methods of probability theory and the laws of geometric optics, the author obtained Formula (2.2) 
in (Batanov-Gaukhman, 2021) 
 

𝐷(𝜈, 𝜔/𝜗, 𝛾) =
1

2𝜋2𝑙2
(
𝑐𝑜𝑠2(𝜋𝑛1)−𝑐𝑜𝑠(𝜋𝑛1) 𝑐𝑜𝑠(√

𝑎2+𝑏2

𝑑2
𝑙2/𝜂)

(
𝜋𝑛1

𝑙2
⁄ )

2
−(√

𝑎2+𝑏2

𝑑2
𝑙2/𝜂)

2 −
𝑐𝑜𝑠(𝜋𝑛1+√

𝑎2+𝑏2

𝑑2
𝑙2/𝜂)−1

(
𝜋𝑛1

𝑙2
⁄ +√

𝑎2+𝑏2

𝑑2
/𝜂)

2 ) |
𝑑(𝑎𝜈

′ 𝑏𝜔
′ −𝑎𝜔

′ 𝑏𝜈
′)+𝑐𝜈

′ (𝑏𝑎𝜔
′ −𝑎𝑏𝜔

′ )

𝑑2√𝑎2+𝑏2
|,     (155) 

where 

a = cosν cosω + cosϑ cosγ;   b = cosν sinω + cosϑ sinγ;   d = sinν + sinϑ;    aν = – sinν cosω;                             

bν = – sinν sinω;     cν = cosν;     aω = – cosν sinω;     bω = cosν cosω; 

𝜂 =
𝑙1
2(𝜋2𝑛1

2−6)

6𝜋2𝑟𝑐𝑜𝑟5
 ,

           

                                                                                                                 (156) 

  

 

here 
l1 is the thickness of one reflective layer (i.e. horizontal atomic plane) of the crystal (see Figure 2.1 in (Batanov-

Gaukhman, 2021)); 
l2 = l1n1  is the depth of the multilayer surface of the single crystal, effectively participating in the elastic scattering 

of electrons; 

n1 is the number of uneven layers of the single crystal (sinusoidal type), lying in the interval [0, l2]; 

rcor is the autocorrelation radius of one uneven layer of the crystal of the sinusoidal type. This autocorrelation 

radius is approximately equal to the average radius of curvature of the sinusoidal irregularities of one layer of 
the crystal; 

ϑ,γ are the angles that define the direction of motion of microparticles (in particular, electrons) incident on the 

surface of the crystal (see Figure 1.2 in (Batanov-Gaukhman, 2021));  
ν,ω are angles that define the direction of movement of microparticles (in particular, electrons) reflected from the 

surface of the crystal towards the detector (see Figure 1.2 in (Batanov-Gaukhman, 2021)). 

 
Calculations using formula (155) allow us to obtain ring-shaped scattering diagrams of microparticles (in particular, 

electrons) on a crystal (see Figure 16), corresponding to experimental electronograms. 
 

                             
                           а) for:  ϑ = 450,   γ = 00,   n1 = 64,                                                     б) for:  ϑ = 450,  γ = 00,   n1 = 65, 

                                l1 =10–11cm,   rcor= 6 ·10–9 cm                                                            l1 =10–11 cm,   rcor= 6 ·10–9 cm 

 

Fig. 16: Volume diagrams of elastic scattering of electrons on a multilayer surface of a single crystal, calculated 
 using formula (155) for different values of the parameters ϑ, l1, n1 and rcor  
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The number of crystal layers n1, which are penetrated by incident microparticles (in particular, electrons), depends 

on their velocity n1 = f (v). The results of calculations using formula (155) as a function of n1, these calculations 

are in good agreement with the results of the experiment of K. Davisson and L. Germer on the diffraction of 

electrons on a nickel crystal (Davisson & Germer, 1928). 
 

The greatest surprise in quantum physics is caused by the diffraction 
of electrons on two slits. Richard Feynman said: –"This phenomenon is 

absolutely, absolutely impossible to explain in a classical way. In this 

phenomenon lies the very essence of quantum mechanics." 
 

Indeed, if an electron is a point particle, then no reasonable explana-
tion can be given for this experiment. 

 

However, if we consider the "electron" as a stable, on average, spher-
ical vacuum formation in which we can distinguish a core and an outer 

shell (see Figures 1 and 4), then the mysterious charm surrounding 
this double-slit experiment (see Figure 17) can easily dissipate. This 

phenomenon can be explained by wave disturbances of the outer shell 

of the "electron", which simultaneously penetrates both slits, while the 
core of this "electron" passes through only one of them. 

 
Much research is still needed to describe numerous quantum effects using the methods of stochastic quantum 

mechanics and fully geometrized vacuum physics, but it is already possible to confidently assert that the phenom-
ena of the microworld are fundamentally no different from random processes in the macroworld. 

 

There is much to suggest that Einstein's rejection of quantum indeterminism was not unfounded. However, weak-
ened determinism is not due to the restriction of the rigidity of administration and censorship by the "hypothetical 

imperative", but to the imposition of conditions of energetic optimality on an acceptable level of freedom. Weak-
ened determinism is based on the extremity of the efficiency functional, which unites both fundamental principles: 

"Minimum action" (i.e. energetic limitation and reasonable expediency) with "Maximum entropy" (i.e. accessible 

freedom, within the framework of recognized necessity). 
 

 
9 Free "positron" 

 
If in all the previous paragraphs we replace the set of metrics (1) with the signature (+ – – –), defining the 

averaged stable metric-dynamic state of a free resting valence "electron", with the set of antipodal metrics (11) 

with the signature (– + + +), and also replace the terms: 
 

- "outer side of the -12,-15-vacuum" with "inner side of the -12,-15-vacuum"; 

- "subcont" with "antisubcont"; 

- "convexity" with "concavity"; 

- the notations 𝑑𝑠𝑖
(+−−−)

, 𝑑𝑠𝑖
(+)
, 𝑙𝑖
(+)
, 𝑔𝑖𝑗
(+)
, 𝑣𝜃
(+), 𝐸𝑣𝑖

(+)
, 𝑎 𝑖

(+), 𝐴4
(+)

  with  𝑑𝑠𝑖
( − + + +)

, 𝑑𝑠𝑖
(−)
, 𝑙𝑖
(−)
, 𝑔𝑖𝑗
(−)
, 𝑣𝜃
(−), 𝐸𝑣𝑖

(−)
, 𝑎 𝑖

(−), 𝐴4
(−)

, 

then we obtain a completely analogous, but completely opposite metric-dynamic model of an on average stable 
spherical vacuum formation – a free resting valence “positron”. 

 

If we add the set of metrics (1) to the set of antipodal metrics (11), we get zero. That is, the "electron" and 
"positron" completely compensate each other's manifestations. 

 
 

     

 
Fig. 17: Electron diffraction on two slits 
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10 Quasi-stationary interactions of "particles" and "antiparticles" 

 

10.1 Simplified quasi-stationary "electron" - "positron" interaction 
 

There are no separately existing "electrons" and "positrons". Considering these stable vacuum formations sepa-
rately is possible only within the framework of a simplified mathematical model. 

 
If the cores of the "electron" and "positron" are separated from each other, then subcont - antisubcont currents 

constantly circulate between the raqiya of these vacuum formations (see Figure 18). 

 
 

 
                    
 

Fig. 18: Schematic representation of the average circulation of a,b-subcont and a,b-antisubcont  
between the “electron” and “positron” raqiyas 

 
 

In §2.2 it was shown that in the outer shell of the “electron” the a-subcont flows in the form of thin currents 
twisted in spirals around all radial directions to the “electron’s” raqiya (i.e. spherical abyss-crack) (see Figures 5 

and 6), and the b-subcont flows out from the “electron’s” raqiya in the form of thin currents in all directions along 

a multitude of counter-spirals. 
 

As a result, the acceleration vector of the subcont (or the geometrized vector of the eclectic intensity of the 
subcont) in the outer shell of the “electron” has components (59) 
 

𝑎𝛼𝑟
(+)
= 𝐸𝑣𝑟

(+𝑎𝑏)
=

𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

 ,    𝑎𝛼𝜃
(+)
= 𝐸𝑣𝜃

(+𝑎𝑏)
= 0,       𝑎𝛼𝜙

(+)
= 𝐸𝑣𝜙

(+𝑎𝑏)
= 0.                                           (157) 

  

 

 

In the outer shell of the "positron" similar but opposite processes occur: the a-antisubcont flows in the form of 

thin currents from all sides to the "positron" raqiya along a multitude of spirals, and the b-antisubcont flows out 
from the spherical abyss-crack (i.e., raqiya) of the "positron" in the form of thin currents in all directions along a 

multitude of counterspirals. As a result, the acceleration vector of the antisubcont (or the geometrized vector of 
the eclectic tension of the antisubcont) in the outer shell of the "positron" has the components 

 

𝑎𝛼𝑟
(−)
= 𝐸𝑣𝑟

(−𝑎𝑏)
=

𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

 ,      𝑎𝛼𝜃
(−)
= 𝐸𝑣𝜃

(−𝑎𝑏)
= 0,      𝑎𝛼𝜙

(−)
= 𝐸𝑣𝜙

(−𝑎𝑏)
= 0.                                         (158) 

  

 

 
Earlier we assumed that in the outer shells of the free "electron" and "positron" these subcont and antisubcont 

currents and countercurrents began and ended at the periphery of the Universe (see Figures 6). Now we will 
consider that some of these currents and countercurrents circulate between the "particle" and "antiparticle" raqiyas 

(in particular, between the "electron" and "positron" raqiyas, see Figures 18). 
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In this case, between the "electron" and "positron" raqiyas there are four intertwined subcont-antisubcont currents 

with accelerations of the form (55) and (56) 

 

I          𝑎𝑟
(+а)

= −
𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)

         –  a-subcont;                                                                             (159)           

H          𝑎𝑟
(+𝑏)

=
𝑐2𝑟6

2𝑟2√1+ 
𝑟6
𝑟

             –  b-subcont;                                                                              (160) 

V           𝑎𝑟
(−𝑎)

=
𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)

          –  a-antisubcont;                                                                         (161) 

H         𝑎𝑟
(−𝑏)

= − 
𝑐2𝑟6

2𝑟2√1+ 
𝑟6
𝑟

         –  b-antisubcont.                                                                         (162) 

There is also a fifth [i (kots)] fundamentally different acceleration, caused by the phase shift of the subcont-antisubcont currents between the 
"particle" and "antiparticle" nuclei. This acceleration is equivalent to the gravitational interaction between the "electron" and "positron" core, 
which is planned to be considered separately in the following articles of this project. 

 
The twisting of the four subcont – antisubcont currents can be explained using a four-sided Mobius strip. In this 

case, each of the four vacuum currents with accelerations (159) – (162) flows along its side of the four-sided 
Mobius strip, transforming into each other at the inflection points located in the “electron” and “positron” raqiyas. 

 

Thus, the “electron” attracts the “positron” with acceleration 
 

𝑎𝑟
(𝑒+𝑒̄)

=
1

√4
√а𝑟

(+а)2
+ а𝑟

(+𝑏)2
+ а𝑟

(−𝑎)2
+ а𝑟

(−𝑏)2
=

𝑐2𝑟6

2𝑟2√(1− 
𝑟6
2

𝑟2
)

 .                                                         (163) 

 
Similarly, the "positron" attracts the "electron" with the same acceleration (since the action is equal to the reaction) 

 

𝑎𝑟
(𝑒̄+𝑒)

=
1

√4
√а𝑟

(−а)2
+ а𝑟

(−𝑏)2
+ а𝑟

(+𝑎)2
+ а𝑟

(+𝑏)2
=

𝑐2𝑟6

2𝑟2√(1− 
𝑟6
2

𝑟2
)

 .               

The total radial acceleration with which the "electron" and "positron" 

are attracted to each other on average is 
 

𝑎𝑟
(𝑒,𝑒̄)

 = 𝑎𝑟
(𝑒+𝑒̄)

+ 𝑎𝑟
(𝑒̄+𝑒)

= 
𝑐2𝑟6

𝑟2√(1− 
𝑟6
2

𝑟2
)

 ,                               (163)            

where, in this case, r is the distance between the centers of the 

“electron” and “positron”. 
 

The graph of function (163) is shown in Figure 19. This function de-

termines the acceleration of the convergence of the core of the “elec-
tron” and the core of the “positron” depending on the distance be-

tween their centers. 
 

 

 
Fig. 19: Graph of function (163) for the con-
ventionally accepted с = r6 = 1. This function 

determines the acceleration of the approach 
of the cores of the “electron” and “positron” 
depending on the distance between their 
centers. 
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For r » r6  Ex. (163) is simplified 

 𝑎𝑟
(𝑒+𝑒̄)

=
𝑐2𝑟6

𝑟2
 ,                                                                                                                             (164) 

 

and corresponds to the strength of the Coulomb interaction between an electron and a positron in classical elec-
trostatics 

 

𝐹𝑟
(𝑒+𝑒̄) =

𝑒2

4𝜋𝜀0 𝑟
2 .                                                                                                                          (165) 

 

Comparing Ex. (164) and (165), we find the correspondence 
 
𝑒2

4𝜋𝜀0𝑚𝑒
≅ 𝑐2𝑟6 , where  𝑚𝑒 is the rest mass of the electron.                                                               (166)   

 

Based on relation (166), we can estimate the radius of the core of the “electron” 
 

𝑟6 ≅ 
𝑒2

4𝜋𝜀0𝑐
2𝑚𝑒

≅ 2.8179403267 × 10−13cm,                                                                                 (167)   

 
in modern physics, this value is usually called the "classical radius of the electron" or the "Lorentz radius" or the 

"Thomson scattering length". 

 
10.2 Simplified quasi-stationary “electron” – “electron” interaction 
 
As shown in Figure 20, between the “electron” 1 and “electron” 2 only subcont currents and countercurrents 

circulate (i.e. only subcont exchange process take place), the antisubcont does not circulate between them. 

 

 
Fig. 20: Schematic representation of the average circulation of the a-subcont 

and b-subcont between the raqiyas of the “electron 1” and “electron 2” 
 
 

As shown in §2, the a1-subcont with acceleration (55) flows to the raqiya of the “electron1” and the b1-subcont 

with acceleration (56) flows away from it (see Figure 20). The total radial component of the acceleration of the 
subcont in the outer shell of the “electron 1”, repulsive the core of the “electron 2”, is on average equal to (58) 

 

𝑎𝑟1
(+𝑎1𝑏1)

=
1

√2
√а𝑟

(+а1)2
+ а𝑟

(+𝑏1)2
=

𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

 .                                                                                 (168)               



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 15 (1), 23-69 (Enero/Marzo, 2024) / Batanov-Gaukhman 

 

64 

 

In this case, the b1-subcont, which flows away from the raqiya of "electron 1", flows into the raqiya of "electron 

2" in the form of an a2-subcont and flows out of it in the form of a b2-subcont (see Figure 20). As a result, "electron 

2" repulsive the core of the “electron 2” with a similar acceleration 
 

𝑎𝑟2
(+𝑎2𝑏2)

=
1

√2
√а𝑟

(+а2)2
+ а𝑟

(+𝑏2)2
=

𝑐2𝑟6

2𝑟2√1−
𝑟6
2

𝑟2

 .                                                                                 (169)               

 

Thus, “electron 1” and “electron 2” on average repel each other with a common acceleration 
 

𝑎𝑟
(𝑒1+𝑒2) = 𝑎𝑟1

(+𝑎1𝑏1)
+ 𝑎𝑟2

(+𝑎2𝑏2)
=

𝑐2𝑟6

𝑟2√(1− 
𝑟6
2

𝑟2
)

 ,                                                                                  (170)               

 

where, in this case, r is the distance between the centers of “electron 1” and “electron 2”. 
 

For r » r6, Ex. (170) is simplified 
 

𝑎𝑟
(𝑒1+𝑒2) =

𝑐2𝑟6

𝑟2
 ,                                                                                                                           (171) 

 

and corresponds to the force of Coulomb repulsion of two electrons from each other (165). 

 
A similar consideration of the "positron 1" – "positron 2" interaction leads to the same result 
 

 𝑎𝑟
(𝑒1+𝑒2) = 𝑎𝑟1

(+𝑎1𝑏1)
+ 𝑎𝑟2

(+𝑎2𝑏2)
=

𝑐2𝑟6

𝑟2√(1− 
𝑟6
2

𝑟2
)

 .                                                                                 (172) 

 

For the case under consideration, it would be correct to solve Einstein's vacuum equations, taking into account 

the vacuum stresses that arise during the interactions of the "particles". However, this is a difficult task. In addition, 

in the simplified model proposed here, we assumed that at each fixed moment of time, the interaction between 
two "particles" is quasi-stationary. That is, we conditionally assume that the "electron" and "positron" or "electron 

1" and "electron 2" in a Coulomb-type interaction move so slowly that at each moment they can be considered as 
if motionless. In fact, the shape and structure of the "electron" and "positron" change during the movement (this 

is planned to be shown in the next article of this series). These approximations are justified by the fact that they 
bring clarity to the geometric nature of electric charge (see §2.2.2) and provide an explanation of Coulomb's law 

based on simplified metric-dynamic models of the valence "electron" and valence "positron". 

 
 

CONCLUSION 
                                                                                                          "The electron is as inexhaustible as the atom,       
                                                                                                            nature is infinite." 
                                                                                                                         V.I. Lenin, "Materialism and Empiriocriticism", Chapter V 
 

In this article (i.e. in Part 7 of "Geometrized Physics of Vacuum Based on the Algebra of Signature") averaged 

metric-dynamic models of only two mutually opposite stable spherical vacuum formations are considered: a free 

"electron" (i.e. a conditional "convexity" of the -12,-15-vacuum) and a free "positron" (i.e. a conditional "concavity" 

of the -12,-15-vacuum). 

 
The study of simplified metric-dynamic models of the "electron" and "positron" allowed us to demonstrate the use 

of the mathematical apparatus and methodology of geometrized vacuum physics, which includes (Batanov-
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Gaukhman, 2023a, 2023b, 2023c, 2023d, 2023e, 2023f): vacuum differential geometry (i.e., the nullified general 

theory of relativity), the Algebra of signature (i.e., the metric knot topology), and the effective probability theory 

(i.e., stochastic quantum mechanics). These mathematical tools are suitable for a detailed study of all stable and 
unstable spherical vacuum formations presented in §4 of (Batanov-Gaukhman, 2023f): "quarks", "leptons", "bar-

yons", "mesons" and "bosons", "atoms" and "molecules". 
 

In addition, the "electron" and "positron" are artificially extracted from the general hierarchical cosmological model 
presented in §§1–3 in (Batanov-Gaukhman, 2023f). This is done by leaving for consideration only those terms 

from the hierarchical sets of metrics (23) – (27) and (28) – (32) in (Batanov-Gaukhman, 2023f) that contain radii 
r6 ~ 10–13 cm (corresponding to the size of the nucleus of the "electron" and "positron"). In this hierarchical 

cosmological model, all spherical vacuum formations of different scales nested in one another (like matryoshka 

dolls, see Figure 1 in (Batanov-Gaukhman, 2023f)) are similar to one another. Therefore, if in all equations and 
expressions of this article instead of radii from the hierarchical sequence (44a) in (Batanov-Gaukhman, 2023f): 

 

r2 ~ 1029  cm  is radius corresponding to the size of the observable Universe, 
r6 ~ 10–13 cm  is radius corresponding to the size of the “electron” core, 

r7 ~ 10–24 cm  is radius corresponding to the size of the “proto-quark” core 

 

substitute from the same hierarchy of radii, for example: 

 

r2 ~ 1029  cm  is radius corresponding to the size of the observable Universe, 

r4 ~ 108    cm  is radius corresponding to the size of the core of a planet or star, 

r6 ~ 10–13 cm  radius corresponding to the size of the core of the “electron”, 

 
then we obtain metric-dynamic models of “planets”; 

 
or, for example: 

 

r2 ~ 1029 cm  is radius corresponding to the size of the observable Universe, 

r3 ~ 1019 cm is the radius corresponding to the size of the core of the galaxy, 

r4 ~ 108   cm is radius corresponding to the size of the core of a planet or star, 

 

then we get metric-dynamic models of "galaxies", etc. 

 

On closer examination, "electron" and "positron" are not mathematical points, as they are treated in classical 
electrodynamics and in a number of quantum theories. "Electron" and "positron" are infinitely complex objects 

occupying the entire Universe. Four spherical regions can be distinguished in them: the outer shell, the shell, the 
nucleus and the inner nucleolus, which require separate extensive studies. 

 

No matter how much we study "electron" and "positron" as, on average, stable vacuum formations, they will still 
remain unknown. This article considers only some aspects related to free resting "electron" and "positron" and 

their interaction with each other at a simplified level of quasi-static vacuum electrostatics. 
 

Many questions related to the uniform and accelerated motion of the "electron" and "positron", their state in the 
composition of an atom (see ranking expressions (105) – (110) in (Batanov-Gaukhman, 2023f)), their interaction 

with high-frequency and low-frequency "photons" and other "bosons", questions of their annihilation, the nature 

of electric current, etc. were left outside the scope of consideration. 
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Among the positive results of this article, it can be noted that within the framework of the theory developed here, 

the problem of the connection between the deterministic vacuum theory of relativity and quantum mechanics is 

easily solved, and the existence of the so-called "mass gap" is logically substantiated. 
 

Vacuum is similar to an elastic-plastic continuous medium (trembling jelly), which constantly and everywhere 
chaotically seethes, bizarrely bends and twists into spirals, topological knots are tied and untied in it, etc. Einstein's 

vacuum equations are, in essence, conservation laws, i.e. conditions for ensuring the stability of average local and 
global vacuum formations. Metric-solutions of these vacuum equations allow us to obtain average (i.e. simplified) 

metric-dynamic models (mental frameworks) of stable spherical vacuum formations. However, the averaged stable 

structure of "particles" is illusory – it is only a mental construction, i.e. the result of the ability of our thinking to 
simplify infinitely complex situations. 

 
In addition, the nuclei of spherical vacuum formations, extracted from the seething chaos by averaging and sim-

plification, themselves move chaotically as structureless particles (corpuscles) under the influence of the seething 

vacuum medium (see Figure 26). However, the arbitrariness of the behavior of a randomly wandering nucleus 
(corpuscle) is only apparent. When averaging the chaotic behavior of a nucleus, it turns out that it obeys the laws 

of effective probability, which are a compromise between two opposite global aspirations of any stochastic system 
for "Minimum Action" (i.e., for energy conservation) and for "Maximum Entropy" (i.e., for ultimate freedom). The 

equations of stochastic quantum mechanics, describing the average behavior of a chaotically wandering particle, 
turned out to be conditions for the extremum of the averaged efficiency functional (see (Batanov-Gaukhman, 

2024)). 

 
It may seem that deterministic Einstein vacuum equations and stochastic diffusion equations and Schrödinger 

equations relate to different laws of nature. In fact, they all have their roots in a deep understanding of the 
dichotomy of "Order and Chaos" and in the philosophical definition of "Freedom as cognized necessity" (Baruch 

Spinoza, Georg Hegel). Einstein vacuum equations and the equations of stochastic mechanics are different forms 

of manifestation of the extremality of one efficiency functional. If we neglect the chaotic component of the parti-
cle's motion (i.e. if we consider only the average trajectory of its motion), then the search for the extremality of 

the efficiency functional of such a stochastic system can move on to the Lagrangian formalism of classical me-
chanics (see expression (18a) in (Batanov-Gaukhman, 2024)). 

 

Thus, in the geometrized vacuum physics developed here, random fluctuations are first eliminated by averaging 
in order to reveal the average structure of stable vacuum formations. Then, chaotic fluctuations are returned to 

consideration as: 
- dynamic chaos due to the study of the average behavior of chaotically wandering nuclei (corpuscles) of, on 

average, stable spherical vacuum formations; 
- topological chaos due to the study of nodal superpositions of metrics with 16 different signatures (see §1); 

- relic chaos due to the study of fluctuations of the vacuum itself. 

 
Within the framework of the proposed "geometrized vacuum physics" there are no contradictions between the 

general theory of relativity, probability theory and quantum mechanics. 
 

In the "geometized physics of vacuum" the concept of "mass" is absent. As has been repeatedly noted in articles 

(Batanov-Gaukhman, 2023a; 2023b; 2023c; 2023d; 2023e; 2023f), the heuristically introduced physical quantity 
"mass" with the dimension of kilogram (which corresponds to the weight of one liter of purified water at a tem-

perature of 4 0C and normal atmospheric pressure at the latitude and longitude of Paris) is convenient for applied 
problems. But this quantity is completely impossible to introduce into a completely geometrized theory. 

 
In the theory developed here, the subject of study is stable and unstable spherical vacuum formations (i.e. local and 

global averaged deformations of the corpuscular type vacuum) of various scales. In this case, such concepts as 
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charge, mass, spin, color and other characteristics of particles in the fully geometrized physics developed here are 

expressed through the properties of 3-dimensional space illuminated by light rays (i.e. through the properties of the 

m,n-vacuum): the speed of light in a vacuum, the radius of the "particle" core, the signatures of the metric, etc. 

 
Although the terminology and basic concepts in “geometrized vacuum physics” differ from modern quantum field 

theory, one can try to answer one of the “Millennium Prize Problems”, which is formulated as “The Yang–Mills 
existence and mass gap problem”. 

 

First, we note that Einstein's vacuum equations, considering all 16 signatures, 
 

 

(+ + + +)1 (+ + + −)5 (− + +−)9 (+ + − +)13

(− − − +)2 (− + + +)6 (− − + +)10 (− + − +)14

(+ − − +)3 (+ + − −)7 (+ − − −)11 (+ − + +)15

(− − + −)4 (+ − + −)8 (− + − −)12 (− − − −)16

                                                                                         (173) 

 

is a special case of the Yang-Mills equations (Krivonosov & Lukyanov, 2009). 
 

Recall that the Yang-Mills equations are a system of partial differential equations for a connection on a vector 
bundle. They arise as the Euler-Lagrange equations from the Yang-Mills action functional. 
 

Secondly, within the framework of the fully geometrized theory developed here, the problem of the existence of 
a mass gap is easily solved. 

 
Secondly, within the framework of the fully geometrized theory developed here, the problem of the existence of 

a mass gap can be easily solved. 

 
Recall that in quantum field theory the mass gap is the difference in energy between the vacuum and the next 
highest energy state. The vacuum energy is zero by definition, and if we assume that all energy states can be 
treated as particles in plane waves, the mass gap is equal to the mass of the lightest particle (i.e., the electron). 
 
In previous articles (Batanov-Gaukhman, 2023d, 2023e, 2023f) it was shown that Einstein vacuum equations (140) 
in (Batanov-Gaukhman, 2023e) 

 

𝑅𝑖𝑘 ± Λ𝑎 𝑔𝑖𝑘 = 0,                                                                                                                         (174)   

 
have flat solutions (10) and (20) 

 

𝑑𝑠5
(+−−−)2

=   𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),          
                                       

𝑑𝑠5
(−+++)2

= − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2), 
 

which determines the stable metric-dynamic state of the undeformed section of the two-sided -12,-15-vacuum. 

 

The next stable, but already deformed, state of the outer side of the -12,-15-vacuum, i.e. (subcont), is determined 

by the set of metric-solutions (2) – (5) and (6) – (9) of the same vacuum equation, which allow us to construct 
an averaged metric-dynamic model of the "electron". Similarly, the stable deformed state of the inner side of the 

-12,-15-vacuum (i.e. antisubcont) is determined by the set of metric-solutions (12) – (15) and (16) – (19) of the 

same vacuum equation (174), which allow us to construct an averaged metric-dynamic model of the "positron". 
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Here we are not talking about the difference in the rest masses (or rather energies) of the vacuum and the electron, 

but about the two nearest stable states of the -12,-15-vacuum. We call the first stable undeformed state of a section 

of the -12,-15-vacuum "emptiness" (or rather, the Einstein void), and we call the next simplest stable deformed 

state of one side of the  -12,-15-vacuum "electron". The difference between these two average stable states of the 

-12,-15-vacuum, caused by the internal discrete properties of the Einstein vacuum equation. This is the easily 

explainable reason for the existence of the so-called "mass gap" in the Yang-Mills theory. 

 
However, the internal discreteness of Einstein vacuum equations does not lie in the fact that they are quantized 

by the methods of quantum field theory, but in the fact that the solutions of these levels are discrete in nature, 

both from the point of view of the hierarchical discontinuity of the sizes of the cores of stable vacuum formations, 
and from the point of view of the countable classification of topological nodes, associated with the limitedness of 

the discrete set of 16 possible signatures (173). 
 

In conclusion, it should be noted that it is necessary to distinguish between living and non-living "electrons" and 

"positrons". They differ in that in living vacuum formations, what we perceive as chaos is a complex genetic code 
(i.e. a closed information flow). Living "electrons" and "positrons" are male and female (Fermi-bacteria or viruses). 

Non-living “electrons” and “positrons” are only compacted vacuum shells, revealed from senseless chaos by means 
of averaging. 

 
The article is accompanied by fractal illustrations. Some fractals convey the essence of natural manifestations in an 

amazing way. Sometimes it is necessary to write several pages of text to explain what a fractal conveys in one image. 

 
Unfortunately, it is almost impossible to find the authors of these masterpieces on the Internet, so the fractals are 

provided without indicating their creators. We compensate for this by expressing heartfelt gratitude to these 
devotees of beauty, starting with Gaston Maurice Julia and Benoit Mandelbrot, with the hope that their efforts will 

serve to expand our knowledge of the bottomless depths of reality around us. 
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