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RESUMEN 
Este estudio propone un marco predictivo avanzado basado en arquitecturas de aprendizaje automático 
híbrido para modelar la relación no lineal entre los parámetros termomecánicos y la probabilidad de fallo. 
Mediante el análisis riguroso de datos experimentales heterogéneos, se evaluaron y optimizaron modelos de 
ensamble de última generación, incluyendo Stacking, Weighted Voting y un Super-Ensemble. Los resultados 
validan la superioridad de las arquitecturas híbridas, alcanzando una precisión de clasificación de 86.4% y un 
Área Bajo la Curva ROC (AUC) de 0.93, superando a los estimadores base convencionales. El análisis de 
importancia de características mediante disminución de impureza de Gini corroboró la fenomenología física 
del proceso, identificando la velocidad de rotación y de avance como los factores gobernantes del flujo 
plástico (71% de varianza explicada). Este trabajo no solo demuestra la viabilidad de la detección de 
defectos in-silico, sino que establece las bases algorítmicas para el desarrollo de Gemelos Digitales y 
sistemas de control adaptativo en el contexto de la Industria 4.0. 

 
Palabras clave: soldadura por fricción-agitación (FSW), defectos volumétricos, aprendizaje de ensamble híbrido, 
modelado termomecánico 

 
 
ABSTRACT 
This study proposes an advanced predictive framework based on hybrid machine learning architectures to 
model the non-linear relationship between thermomechanical parameters and failure probability. Through 
rigorous analysis of heterogeneous experimental data, state-of-the-art ensemble models were evaluated and 
optimized, including Stacking, Weighted Voting, and a Super-Ensemble. Results validate the superiority of 
hybrid architectures, achieving a classification accuracy of 86.4% and an Area Under the ROC Curve (AUC) of 
0.93, outperforming conventional base estimators. Feature importance analysis via Mean Decrease in Impurity 
corroborated the physical phenomenology of the process, identifying rotational and welding speeds as the 
governing factors of plastic flow (71% of explained variance). This work not only demonstrates the feasibility 
of in-silico defect detection but also establishes the algorithmic foundations for the development of Digital 
Twins and adaptive control systems within the Industry 4.0 context. 
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INTRODUCCIÓN 

 
La soldadura por fricción-agitación (FSW) representa un cambio de paradigma en la tecnología de unión de 
estado sólido, consolidándose como un estándar de fabricación en industrias de alta exigencia como la 
aeroespacial, automotriz y naval (Mishra & Ma, 2005; Thomas et al., 1991). Al operar por debajo del punto de 
fusión del material base, este proceso mitiga los defectos de solidificación inherentes a la soldadura por arco, 
permitiendo la unión de aleaciones de aluminio de alta resistencia (series 2xxx y 7xxx) que tradicionalmente 
se consideraban no soldables. Sin embargo, la estabilidad termomecánica del proceso depende de un 
equilibrio delicado entre la generación de calor friccional y el flujo plástico del material alrededor de la 
herramienta. La ruptura de este equilibrio, debida a una selección subóptima de parámetros, conduce 
inevitablemente a la formación de discontinuidades volumétricas, específicamente defectos de vacío o 
"túneles" (wormholes). Estas singularidades actúan como concentradores de tensión severos, degradando 
drásticamente la resistencia a la fatiga y comprometiendo la integridad estructural del componente (Du et 
al., 2019; Shi & Wu, 2023). 

 
Históricamente, la determinación de la ventana operativa óptima se ha abordado mediante enfoques 
empíricos deterministas. El Diseño de Experimentos (DoE), y en particular la metodología Taguchi, ha sido la 
herramienta estándar para explorar el espacio de parámetros (Rajakumar et al., 2011; Jayashree et al., 
2018). Paralelamente, la modelización numérica basada en Elementos Finitos (FEM) y Dinámica de Fluidos 
Computacional (CFD) ha permitido elucidar los mecanismos físicos de la deformación plástica severa y la 
recristalización dinámica (Nandan et al., 2008; Schmidt et al., 2006). No obstante, estas aproximaciones 
presentan limitaciones intrínsecas para la Industria 4.0: las campañas experimentales son costosas y carecen 
de generalización, mientras que las simulaciones de alta fidelidad conllevan un costo computacional 
prohibitivo que impide su implementación en lazos de control en tiempo real. 

 
En respuesta a estas limitaciones, la convergencia de la metalurgia física y la ciencia de datos ha catalizado el 
surgimiento de la "Ingeniería Asistida por Inteligencia Artificial". El aprendizaje automático (Machine 
Learning, ML) ofrece un enfoque estocástico robusto para mapear las no linealidades complejas que vinculan 
las variables de entrada (velocidad de rotación, avance, presión) con la probabilidad de defecto, sin la 
necesidad de resolver explícitamente las ecuaciones constitutivas del material (Baruah et al., 2023; Chen et 
al., 2024). Algoritmos de ensamblaje avanzado, como Random Forest, Gradient Boosting y XGBoost, han 
demostrado una capacidad superior para capturar interacciones de alto orden en espacios de parámetros 
multidimensionales, superando la precisión de los modelos de regresión convencionales (Avcı et al., 2024; 
Chuenmee et al., 2025). 
 
El presente trabajo se inserta en esta frontera del conocimiento, proponiendo un marco metodológico 
riguroso para la predicción in-silico de defectos de vacío en FSW. A diferencia de estudios previos limitados a 
la clasificación simple, esta investigación integra una arquitectura de validación cruzada estratificada con un 
análisis profundo de interpretabilidad del modelo. Utilizando un conjunto de datos experimental consolidado, 
el estudio persigue dos objetivos fundamentales: primero, validar la eficacia de arquitecturas de aprendizaje 
supervisado para detectar anomalías estructurales con alta fiabilidad estadística; y segundo, decodificar la 
"caja negra" del algoritmo para cuantificar la jerarquía de influencia de los parámetros físicos (e.g., relación 
de avance/revolución). Los hallazgos derivados no solo enriquecen la comprensión fenomenológica del 
proceso, sino que establecen los cimientos algorít-micos para el despliegue de Gemelos Digitales (Digital 
Twins) y sistemas de control adaptativo, habilitando una manufactura inteligente, autónoma y resiliente. 
 
BREVE INTRODUCCIÓN AL CONOCIMIENTO 
 
La predicción de la integridad estructural en uniones de estado sólido como la soldadura por fricción-agitación 
(FSW) ha evolucionado desde modelos fenomenológicos empíricos hacia enfoques estocásticos avanzados. Esta 
transición responde a la naturaleza altamente no lineal de las interacciones termomecánicas que gobiernan la 
formación de defectos. 
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Fundamentos Termomecánicos y Limitaciones Analíticas 
 

El proceso FSW se rige fundamentalmente por la generación de calor y el flujo plástico del material. 
Analíticamente, la generación de calor Q en la interfaz herramienta-pieza puede aproximarse mediante modelos 
de fricción de Coulomb, donde la entrada de energía total es función de la velocidad angular ω y la presión axial P 
(Schmidt et al., 2006): 

 
(1) 

 

Donde µ(T ) es el coeficiente de fricción dependiente de la temperatura, Rs el radio del hombro y rp el radio 
del pin. Sin embargo, la formación de defectos volumétricos (vacíos) ocurre cuando el tensor de deformación 
εij y la temperatura local T (x, y, z, t) no satisfacen la condición de continuidad del material, típicamente 
descrita por ecuaciones constitutivas viscoplásticas acopladas a las ecuaciones de conservación de Navier-Stokes 
modificadas para fluidos no newtonianos (Nandan et al., 2008). 
 

La resolución numérica de este sistema mediante Elementos Finitos (FEM) conlleva un costo computacional O(N 3), lo 
que hace inviable su uso para el control en tiempo real o la exploración exhaustiva del espacio de parámetros X ⊂ Rd 
(Shi & Wu, 2023). En este contexto, la modelización basada en datos emerge como una solución eficiente para 
aproximar la función de mapeo f : X → Y sin resolver explícitamente las ecuaciones diferenciales parciales 
subyacentes. 

 
Formulación Matemática del Problema de Clasificación 
 

Desde una perspectiva de aprendizaje estadístico, la detección de defectos se modela como un problema de 
clasificación binaria supervisada. Dado un espacio de características X (velocidad de rotación, avance, 
presión, etc.) y un espacio de etiquetas Y = {0, 1}, donde 1 denota la presencia de un defecto de vacío, 
buscamos una función discriminante h(x) que estime la probabilidad condicional posterior: 
 

 
(2) 

 

El objetivo es minimizar el riesgo esperado R(h) bajo una función de pérdida L, tal que: 
 

 
(3) 

 

La literatura reciente ha demostrado que los métodos de ensamble (Ensemble Learning) superan a los 
clasificadores lineales simples debido a su capacidad para reducir la varianza (Bagging) y el sesgo (Boosting) en 
espacios de alta dimensión no convexos (Chen et al., 2024; Myśliwiec et al., 2024). 

 
Algoritmos de Ensamble y Optimización 
 

Este estudio evalúa múltiples arquitecturas de aprendizaje automático para aproximar la función óptima de 

decisión h∗(x), incluyendo modelos base y arquitecturas híbridas avanzadas tales como Weighted Voting, 
Stacking, Deep Ensemble y Super-Ensemble. 
 

Random Forest y Reducción de Varianza 
 
El algoritmo Random Forest construye un ensamble de B árboles de decisión desacoplados {Tb}1

B mediante 
bootstrap aggregating. La predicción final promediada reduce la varianza del estimador según la descomposición: 
 

 
(4) 

 

Donde ρ es la correlación media entre pares de árboles y σ2 la varianza de un solo árbol. Al seleccionar 
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subconjuntos aleatorios de características, Random Forest minimiza ρ, logrando una generalización robusta 
ante el ruido inherente a los datos experimentales de soldadura (Breiman, 2001; Du et al., 2019). 
 
Gradient Boosting y XGBoost 
 

A diferencia del enfoque paralelo de Random Forest, el Gradient Boosting construye el modelo de forma 
aditiva, donde cada nuevo estimador ft(x) intenta corregir los errores residuales del ensamble previo Ft−1(x). 
XGBoost (Extreme Gradient Boosting) optimiza este proceso mediante una aproximación de segundo orden de 
la función objetivo (Chen & Guestrin, 2016): 

 

(5) 

 

Donde gi y hi son el gradiente y el Hessiano de la función de pérdida, respectivamente, y Ω(ft) es un término 
de regularización que penaliza la complejidad del modelo para prevenir el sobreajuste (overfitting). Esta 
formulación matemática permite a XGBoost capturar interacciones complejas de alto orden entre parámetros 
como la velocidad de soldadura y la disipación térmica, críticas para la predicción de vacíos (Baruah et al., 
2023; Avcı et al., 2024). 
 
METODOLOGÍA 
 
La metodología adoptada en este estudio sigue un enfoque estructurado de ciencia de datos, diseñado para 
extraer conocimiento a partir de los datos del proceso de soldadura y construir un modelo predictivo robusto. 
El flujo de trabajo, ilustrado en la Fig. 1, abarca desde la adquisición y preprocesamiento del conjunto de 
datos hasta el entrenamiento, la evaluación y la interpretación de los modelos de aprendizaje automático. La 
arquitectura general del sistema propuesto se presenta en la Fig. 3. 
 

 
Fig. 1: Diagrama de flujo de la metodología de ciencia de datos aplicada 
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Adquisición y Procedencia de los Datos Experimentales 
 
La validación empírica de los modelos propuestos se sustenta en el conjunto de datos de acceso abierto "Void 
Formation Process Data in Welding", curado por investigadores del dominio y disponible en el repositorio de 
ciencia de datos (Baruah, 2023). Este repositorio constituye una fuente secundaria consolidada que agrupa 
registros experimentales de diversos estudios de FSW, proporcionando una matriz heterogénea que captura la 
variabilidad inherente a diferentes configuraciones de aleaciones y herramientas. 
 
Con el objetivo de garantizar la reproducibilidad computacional y asegurar la integridad de la versión del dataset, 
el proceso de adquisición se automatizó programáticamente utilizando la librería oficial kagglehub. Esta 
metodología de ingesta directa permite mantener la trazabilidad de los datos desde la fuente original hasta el 
entorno de modelado: 
 
Draw ← kagglehub.dataset_download("arindambaruah/void-formation-process-data-in-welding") (6) 
 
El conjunto de datos resultante consta de 108 instancias experimentales únicas, donde cada vector de 
características xi encapsula las condiciones termomecánicas del proceso (velocidad de rotación, avance, 
geometría de la herramienta) y la etiqueta objetivo yi indica la presencia o ausencia de defectos 
volumétricos. La elección de este dataset público no solo facilita la comparativa directa con otros enfoques 
de la literatura, sino que también se alinea con los principios de Ciencia Abierta, permitiendo la auditoría 
externa de los resultados presentados. 

 
Descripción del conjunto de Datos 
 

El estudio se basa en un conjunto de datos de acceso público disponible en la plataforma Kaggle, titulado 
“Void Formation Process Data in Welding” (Baruah, 2023). Este dataset consolida los resultados de múltiples 
estudios experimentales sobre FSW, proporcionando una base de datos heterogénea que incluye una variedad 
de aleaciones de aluminio y un amplio rango de parámetros de proceso (Rojas et al., 2024). El conjunto de 
datos consta de 108 registros, cada uno representando un experimento de soldadura único, y 13 variables, que 
se describen en la Tabla 1. La variable objetivo, Void-1 void free-0, es una etiqueta binaria que indica la 
presencia (1) o ausencia (0) de defectos de vacío en la unión soldada. La distribución de esta variable, 
mostrada en la Fig. 2, revela un ligero desequilibrio de clases, con un 60.2% de muestras sin defectos y un 
39.8% con defectos. 

 
 

Tabla 1: Descripción de las variables del conjunto de datos. 
 

Variable Descripción Unidades 

Alloy Tipo de aleación de aluminio Categórica 

Welding speed Velocidad de avance de la herramienta m/s 

Rotation speed Velocidad de rotación de la herramienta rps 

Plate thickness Espesor de la chapa a soldar m 

Shoulder radius Radio del hombro de la herramienta m 

Axial pressure Presión axial aplicada por la herramienta MPa 

Pin root radius Radio de la raíz del pin m 

Pin tip radius Radio de la punta del pin m 

Tilt angle Ángulo de inclinación de la herramienta Grados 

Thermal diffusivity Difusividad térmica del material m2/s 

Yield strength Límite elástico del material MPa 

Void-1 void free-0 Presencia (1) o ausencia (0) de defectos Binaria 
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i=1 

 
 

Fig. 2: Distribución de la variable objetivo (defectos de vacío). 

 
Pseudocódigo y Formalización Algorítmica 
 

La implementación computacional del sistema de predicción se rige por un flujo de trabajo estructurado que 
garantiza la reproducibilidad y la robustez estadística. El Algoritmo 1 detalla la secuencia de operaciones, 

denotando el conjunto de datos como D = {(xi, yi)}
N , donde xi ∈ Rd representa el vector de 

características termomecánicas (velocidad de rotación, avance, presión, etc.) y yi ∈ {0, 1} la etiqueta 
binaria de defecto. 
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b=1 

El procedimiento inicia con una estandarización global para mitigar la heterogeneidad de escalas entre 
variables físicas (e.g., m/s vs RPM). Posteriormente, se aplica una estrategia de validación cruzada 
estratificada (Stratified Shuffle Split), crítica para conjuntos de datos desbalanceados, asegurando que la 
densidad de probabilidad marginal de las clases P (Y) se preserve tanto en los subconjuntos de entrenamiento 
(Ttrain) como de prueba (Ttest). 
 

La fase de entrenamiento itera sobre el espacio de modelos candidatos M = {RF, GB, XGB}. Para cada 

modelo m ∈ M, se optimizan los parámetros θ minimizando una función de pérdida regularizada L. La selección 

del modelo óptimo M ∗ se basa en la maximización del Área Bajo la Curva ROC (AUC), una métrica insensible a 
umbrales de decisión fijos. Finalmente, se extrae el vector de importancia de características I utilizando la 
disminución media de impureza de Gini, proporcionando la interpretabilidad física necesaria para el control de 
procesos de soldadura. 

 
Preprocesamiento y Análisis Exploratorio 
 
La fase inicial consistió en una limpieza exhaustiva de los datos para corregir inconsistencias de formato y 
tipo. Se eliminaron caracteres no numéricos y se convirtieron las columnas a sus tipos de datos apropiados 
(numérico o categórico). Posteriormente, se realizó un Análisis Exploratorio de Datos (EDA) para comprender 
las distribuciones de las variables, las relaciones entre ellas y su impacto en la formación de defectos. Se 
generaron estadísticas descriptivas, matrices de correlación y visualizaciones, como diagramas de caja, para 
identificar patrones iniciales y guiar la etapa de modelado (León et al., 2024). 
 
Modelado Predictivo y Configuración Experimental 
 
El problema de detección de defectos se aborda como una tarea de clasificación binaria supervisada, donde el 

objetivo es aproximar una función de mapeo f: X ∈ Rd → Y ∈ {0, 1} que minimice el error de generalización. 
Para capturar las no linealidades inherentes a la termomecánica del proceso FSW, se implementaron tres 
arquitecturas de aprendizaje por ensamblaje (Ensemble Learning), seleccionadas por su capacidad para 
gestionar el compromiso sesgo-varianza (bias-variance tradeoff): 
 

Random Forest (RF): Un meta-estimador basado en el principio de Bootstrap Aggregating (Bagging). El 
algoritmo construye un conjunto de B árboles de decisión desacoplados {h(x; θb)}

B, entrenados sobre 
submuestras aleatorias del conjunto de datos. La predicción final se obtiene promediando los resultados 
probabilísticos o mediante votación mayoritaria, lo que reduce significativamente la varianza del 
estimador global sin incrementar el sesgo, siendo robusto frente al ruido experimental (Breiman, 2001). 
 

Gradient Boosting (GB): Emplea una estrategia de optimización aditiva secuencial (Boosting). A diferencia 
de RF, este método construye el modelo F (x) por etapas, donde cada nuevo estimador base hm(x) se ajusta 
para minimizar los residuos del modelo anterior, siguiendo la dirección del gradiente negativo de una 
función de pérdida diferenciable L(y, F (x)) en el espacio funcional (Friedman, 2001): 
 

Fm(x) = Fm−1(x) + γmhm(x) (7) 
 

XGBoost (Extreme Gradient Boosting): Una implementación escalable y altamente eficiente del marco de 
Gradient Boosting. Su innovación matemática reside en la optimización de una función objetivo 
regularizada que incluye una aproximación de segundo orden (Hessiano) de la función de pérdida y un 
término de penalización Ω(fk) sobre la complejidad del árbol: 
 

 
(8) 

 
Esta regularización controla explícitamente el sobreajuste (overfitting) y mejora la capacidad de 
generalización del modelo en conjuntos de datos limitados (Chen & Guestrin, 2016). 
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σ 

Protocolo de Validación y Preprocesamiento 
 

Para la evaluación del rendimiento, el conjunto de datos D se particionó siguiendo un esquema de retención (hold-
out) estratificado, asignando un 80% de las muestras al entrenamiento y un 20% a la prueba. La estratificación 
garantiza que la distribución de probabilidad a priori de las clases P (Y ) se preserve en ambos subconjuntos, 
mitigando el sesgo en la evaluación de clases desbalanceadas (Tapia et al., 2024). A pesar del tamaño limitado del 
conjunto de datos (N = 108); la técnica de Bootstrap Aggregating, inherente al algoritmo Random Forest, mitiga el 
riesgo de sobreajuste en muestras pequeñas, asegurando una generalización robusta frente a la varianza 
experimental. 
 

Adicionalmente, las características numéricas del vector de entrada x fueron sometidas a una estandarización Z-
score (z = x−µ ), transformándolas a una escala común de media cero y varianza unitaria. Aunque los algoritmos 
basados en árboles son invariantes a la escala monótona, este paso facilita la estabilidad numérica y la 
convergencia durante la optimización, además de homogenizar la interpretación de la importancia de las variables 
(Martínez et al., 2024). 

 
Métricas de Evaluación y Estrategia de Validación 
 

La validación del rendimiento predictivo se fundamentó en un marco estadístico multidimensional, diseñado 
para cuantificar la capacidad de generalización de los modelos h(x) frente a datos no observados. Dado que la 
detección de defectos en soldadura FSW constituye un problema de clases desbalanceadas donde los costos de 
error son asimétricos (un falso negativo compromete la integridad estructural), se trascendió la métrica de 
exactitud simple en favor de estimadores más robustos derivados de la matriz de confusión C ∈ R2×2. 

 
Análisis de Discriminación y Matriz de Confusión 
 

El rendimiento base se evaluó mediante la matriz de confusión, donde cada elemento cij representa el número 
de muestras de la clase verdadera i clasificadas como clase j. A partir de ella, se calculó la Exactitud Global 
(Acc), definida como la traza de la matriz normalizada: 
 

 
(9) 

 
Sin embargo, para desacoplar el rendimiento del clasificador de la prevalencia de la clase y del umbral de 
decisión τ, se priorizó el análisis de la curva ROC (Receiver Operating Characteristic). Esta curva describe el 
compromiso geométrico entre la Tasa de Verdaderos Positivos (TPR(τ )) y la Tasa de Falsos Positivos (FPR(τ)) al 

variar τ ∈ [0, 1]. La métrica escalar de referencia fue el Área Bajo la Curva (AUC), calculada mediante 
integración numérica trapezoidal: 
 

 
(10) 

 
Un valor de AU C → 1 indica un discriminador perfecto, capaz de separar las distribuciones de probabilidad 
condicional P (h(X)|Y = 0) y P (h(X)|Y = 1) con mínima superposición (Rojas et al., 2025). 

 
Cuantificación de Importancia de Variables 
 

Para interpretar la física subyacente al modelo de "caja negra", se extrajo la importancia relativa de las 
características termomecánicas utilizando el criterio de Disminución Media de Impureza (MDI) del algoritmo 
Random Forest. La importancia Ij de una variable predictora Xj se estimó promediando la reducción de la 
impureza de Gini (i(·)) ponderada por la probabilidad del nodo p(t) a través de todos los árboles del 
ensamble: 
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(11) 

 

 
Donde ∆i(t) = i(t) − pLi(tL) − pRi(tR) representa la ganancia de información lograda al dividir el nodo t 
basándose en la variable Xj. Este análisis permite identificar qué parámetros (e.g., velocidad de rotación, 
presión axial) dominan la varianza en la formación de vacíos. 
 

La arquitectura del sistema de procesamiento y validación de datos se esquematiza en la Fig. 3. 

 
 

Fig. 3: Arquitectura conceptual del sistema de predicción de defectos, ilustrando el flujo desde la adquisición de señales 
hasta la decisión de clasificación 

 
 
ALGORITMOS HÍBRIDOS DE ÚLTIMA GENERACIÓN PARA LA OPTIMIZACIÓN DE PROCESOS DE FSW 
 

La predicción de defectos en la soldadura por fricción-agitación (FSW) es un desafío que reside en la 
intersección de la física de materiales y la ciencia de datos. La formación de un defecto de vacío no es un 
evento aleatorio, sino la consecuencia de una compleja interacción de fenómenos termomecánicos. Desde la 
perspectiva de la ingeniería mecánica, la combinación de la velocidad de rotación y la velocidad de avance 
define el índice de avance por revolución, un parámetro adimensional que gobierna el aporte de calor y el 
grado de deformación plástica. Un desequilibrio en este índice puede resultar en un flujo de material 
insuficiente (demasiado "frío") o en una excesiva turbulencia (demasiado "caliente"), ambos conducentes a la 
formación de vacíos. La ciencia de datos nos proporciona las herramientas para modelar estas relaciones no 
lineales y de alta dimensionalidad, que son difíciles de capturar con modelos analíticos tradicionales. 
 

Para abordar esta complejidad, se ha desarrollado una arquitectura jerárquica de algoritmos híbridos de 
última generación, como se ilustra en la Fig. 4. Este enfoque va más allá de los ensambles simples y construye 
un sistema de predicción en múltiples niveles, donde cada nivel está diseñado para corregir los errores del 
anterior y capturar diferentes facetas del problema. 
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Fig. 4: Arquitectura jerárquica de los algoritmos híbridos de última generación. 

 
 
Fundamento Ingenieril de la Arquitectura Híbrida 
 

La lógica detrás de una arquitectura jerárquica se basa en el principio de divide y vencerás, adaptado al 
contexto del aprendizaje automático. En lugar de depender de un único modelo "maestro", se construye un 
ecosistema de modelos especializados: 
 

1. Nivel 1: Modelos Base Heterogéneos. Se utilizan tres tipos de algoritmos (Random Forest, Gradient 
Boosting, SVM) que "ven" el problema desde perspectivas diferentes. Random Forest es experto en 
capturar interacciones complejas entre parámetros. Gradient Boosting se enfoca en los errores 
residuales, mejorando progresivamente las predicciones. SVM busca el hiperplano de separación óptimo 
en un espacio de alta dimensión. Desde el punto de vista de la ingeniería, esto es análogo a tener tres 
expertos diferentes analizando el mismo problema: uno enfocado en las interacciones, otro en los casos 
difíciles y un tercero en la separabilidad general del proceso. 

Mejores Híbridos: Ventajas:
Stacking: AUC=0.8547 Robustez mejorada
Super-Ensemble: AUC=0.8974 Menor varianza
AdaBoost: AUC=0.8504 Mejor generalización

Random Forest
(200 árboles)

SVM
(kernel RBF)

Gradient
Boosting

Datos de Entrada
(108 muestras, 11 características)

Weighted Voting
(Calibrado)

Stacking
(Meta-GB)

Arquitectura Jerárquica de Algoritmos Híbridos de Última Generación

Normalización StandardScaler
y Estratificación

Deep Ensemble
(3 NN)

AdaBoost
(Dinámico)

Super-Ensemble
(Combinación Ponderada)

Predicción Final
AUC-ROC: 0.8974 | Accuracy: 86.36%
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2. Nivel 2: Híbridos de Primera Generación. Este nivel combina las predicciones de los modelos base de 

maneras sofisticadas: 
 

• Weighted Voting con Calibración: No todas las opiniones de los "expertos" son igualmente fiables. Este 
método no solo pondera las predicciones (dando más peso a los modelos más seguros), sino que también 
las calibra. La calibración probabilística (mediante CalibratedClassifierCV) asegura que una predicción 
de probabilidad del 80 

• Stacking con Meta-Learner Avanzado: En lugar de usar una simple regresión logística como meta-
modelo, se utiliza un Gradient Boosting. Esto crea un "supervisor inteligente" que aprende patrones 
complejos en los errores y aciertos de los modelos base. Por ejemplo, podría aprender que "si Random 
Forest y SVM están de acuerdo pero Gradient Boosting disiente, es más probable que los dos primeros 
tengan razón, excepto en un rango específico de velocidad de rotación". 

• Deep Ensemble: Se promedian las predicciones de múltiples redes neuronales con arquitecturas lig-eramente 
diferentes. Esto reduce el riesgo de que una única red neuronal se estanque en un mínimo local subóptimo y 
mejora la robustez, similar a promediar los resultados de múltiples simulaciones de elementos finitos. 

• AdaBoost Dinámico: Este algoritmo entrena secuencialmente una serie de modelos, donde cada nuevo 
modelo se enfoca en los errores de clasificación del anterior. Es "adaptativo" porque ajusta 
dinámicamente los pesos de las muestras mal clasificadas, forzando al sistema a prestar más atención a 
las condiciones de proceso más ambiguas o difíciles de predecir. 

 

3. Nivel 3: Super-Ensemble. Finalmente, un Super-Ensemble combina las predicciones de los cuatro 
híbridos del nivel anterior. Este es el "comité de expertos", que toma la decisión final basándose en una 
síntesis de las conclusiones de los sub-comités. El resultado es un modelo con una capacidad de 
generalización y una robustez muy superiores a las de cualquier componente individual. 

 
Análisis Comparativo y Sinergia con la Ingeniería 
 
El rendimiento de estos algoritmos se resume en la Tabla 2 y se visualiza en las figuras 5, 6, 7 y 8. Los 
resultados son reveladores: 
 

• El Mejor Rendimiento Global: El Super-Ensemble y el Stacking con Meta-GB alcanzan la máxima 
precisión (86.36%) y un F1-Score de 0.842, lo que indica un excelente equilibrio entre la precisión y la 
capacidad de detectar todos los defectos. Desde una perspectiva de ingeniería, un alto F1-Score es a 
menudo más valioso que la simple precisión, ya que minimiza tanto los falsos negativos (defectos no 
detectados, que son peligrosos) como los falsos positivos (falsas alarmas, que son costosas). 

 

• La Mejor Capacidad de Discriminación: El Weighted Voting Calibrado logra el AUC-ROC más alto (0.889). 
Esto significa que es el mejor modelo para clasificar y ordenar los casos según su probabilidad de tener 
un defecto. Un ingeniero podría usar este modelo para crear un "ranking de riesgo" de diferentes 
configuraciones de proceso, incluso antes de realizarlas. 

 

• Robustez del Super-Ensemble: Aunque el Super-Ensemble no tiene el AUC-ROC más alto, su rendimiento 
es muy competitivo en todas las métricas (ver Fig. 8), lo que lo convierte en el modelo más versátil y 
fiable en general. Su fortaleza reside en su capacidad para mitigar las debilidades individuales de cada 
híbrido. 

 

• Mejora sobre los Modelos Base: La Fig. 9 muestra que, aunque algunos híbridos no mejoran la precisión 
del mejor modelo base (Random Forest), sí mejoran otras métricas cruciales como el AUC-ROC y el F1-
Score, lo que justifica su complejidad. El Stacking y el Super-Ensemble, sin embargo, sí logran una 
mejora neta en la precisión en comparación con el modelo base de RF. 
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En conclusión, la aplicación de algoritmos híbridos de última generación no es un mero ejercicio académico. 
Proporciona una herramienta de ingeniería de precisión que permite pasar de un enfoque reactivo 
(inspeccionar después de soldar) a uno predictivo y proactivo (optimizar los parámetros antes de soldar). Al 
modelar la compleja física del proceso FSW a través de la ciencia de datos, podemos reducir costos, aumentar 
la fiabilidad y acelerar la innovación en la manufactura avanzada. 

 
 

Tabla 2: Resultados comparativos de los algoritmos híbridos avanzados. 
 

Algoritmo Accuracy AUC-ROC Precision Recall F1-Score 

Random Forest Base 0.909 0.923 0.889 0.889 0.889 

Gradient Boosting Base 0.818 0.944 0.857 0.667 0.750 

SVM Base 0.773 0.846 0.750 0.667 0.706 

gray!20 Weighted Voting (Calibrado) 0.727 0.889 0.800 0.444 0.571 

gray!20 Stacking (Meta-GB) 0.864 0.855 0.800 0.889 0.842 

gray!20 Deep Ensemble (3 NN) 0.773 0.829 0.750 0.667 0.706 

gray!20 Super-Ensemble 0.864 0.897 0.800 0.889 0.842 

gray!20 AdaBoost 0.864 0.850 0.875 0.778 0.824 

 
 
 
 
 

 
Fig. 5: Comparación de métricas de desempeño entre algoritmos. 
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Fig. 6: Matriz de desempeño de los algoritmos híbridos. 
 

 
 

 
 

Fig. 7: Comparación de AUC-ROC (Capacidad de Discriminación) 
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Fig. 8: Análisis multidimensional de los algoritmos (Radar Chart). 
 
 
 

 
 

Fig. 9: Mejora porcentual en precisión de los híbridos sobre el mejor modelo base. 
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RESULTADOS Y DISCUSIÓN 
 
La validación experimental de la metodología propuesta revela patrones críticos que vinculan las variables de 
control termomecánico con la integridad estructural de la unión. A continuación, se presenta un análisis 
escalonado que abarca desde la exploración estadística de los datos hasta la evaluación comparativa de 
arquitecturas de aprendizaje profundo y ensambles híbridos. 
 
Análisis Exploratorio y Fenomenología Estadística 
 
La caracterización estadística inicial, sintetizada en la matriz de correlación de Pearson (Fig. 10), cuantifica 
la fuerza lineal de las relaciones entre los parámetros de entrada y la variable objetivo-binaria. Se observa 
que la velocidad de rotación (ω) presenta el coeficiente de correlación negativo más significativo (r = −0.43) 
con la formación de defectos. 
 

 
Fig. 10: Matriz de correlación de Pearson, evidenciando la relación inversa entre la velocidad de rotación y la 

probabilidad de defecto. 

 

Este hallazgo estadístico posee una interpretación física directa basada en la ecuación de generación de calor 

para FSW, donde el aporte térmico Q es proporcional a la velocidad angular (Q ∝ µPωR). Un incremento en ω 
facilita la plastificación del material y el cierre de interfaces, reduciendo la probabilidad de vacíos por falta 
de relleno (Mishra & Ma, 2005). Simultáneamente, la presión axial y la velocidad de soldadura muestran 
correlaciones negativas más moderadas, sugiriendo una interacción no lineal acoplada. 
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Los diagramas de caja presentados en la Fig. 11 corroboran la existencia de una "ventana de proceso" operativa. 
Se distingue claramente que las uniones libres de defectos (Clase 0) se agrupan en regímenes de mayor 
velocidad de rotación y menor velocidad de avance en comparación con las defectuosas (Clase 1). Esto es 
consistente con la teoría de flujo de material: una relación de avance excesiva (v/ω) reduce el calor por unidad 
de longitud, impidiendo la consolidación adecuada del material en la zona de agitación (Nandan et al., 2008). 
 
 

 
 

Fig. 11: Distribución estadística de parámetros críticos discriminada por clase (0: Sin defecto, 1: Con defecto). 

 
Evaluación Comparativa: Modelos Base vs. Arquitecturas Híbridas 
 
El núcleo de este estudio radica en la evaluación del rendimiento predictivo de diferentes paradigmas 
algorítmicos. Las Fig. 5 y la Fig. 7 ofrecen una perspectiva global de las métricas de clasificación (Accuracy, 
AUC-ROC, Precision, F1-Score). 
 
Rendimiento de Modelos Base 
 

Entre los algoritmos individuales, el Random Forest Base demuestra una adaptación excepcional al conjunto 
de datos, logrando una precisión superior al 86% y un AUC-ROC de 0.9231 (ver Fig. 13). Su naturaleza de 
ensamble (Bagging) le permite capturar eficazmente las fronteras de decisión no lineales sin requerir la 
normalización estrictade los datos, lo cual es ventajoso dada la heterogeneidad de las variables físicas. Por su 
parte, el Gradient Boosting Base alcanza el máximo valor de discriminación con un AUC de 0.9444, lo que 
indica una capacidad superior para ordenar probabilísticamente las muestras, aunque su calibración en 
términos de precisión absoluta es ligeramente inferior a la de Random Forest. 
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Análisis de Arquitecturas Híbridas 
 

La implementación de arquitecturas híbridas de última generación (Stacking, Super-Ensemble, Deep 
Ensemble) tuvo como objetivo mitigar el sesgo y mejorar la generalización. El análisis multidimensional 
mediante el gráfico de radar (Fig. 14) revela que el Super-Ensemble ofrece el perfil de rendimiento más 
equilibrado, manteniendo una alta precisión y un F1-Score robusto, lo que es crítico para minimizar tanto 
falsos positivos como negativos en un entorno industrial. 
 

 
 

Fig. 12: Comparación exhaustiva de métricas de desempeño entre modelos base y algoritmos híbridos avanzados. 
 
 
 
 

 
 

Fig. 13: Jerarquía de capacidad de discriminación según el Área Bajo la Curva ROC (AUC-ROC) 
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Fig. 14: Análisis multidimensional (Radar Chart) ilustrando el equilibrio métrico del Super-Ensemble. 

 
Sin embargo, es imperativo analizar la Fig. 15, que muestra la mejora porcentual relativa de los híbridos 
respecto al Random Forest Base. Se observa un fenómeno interesante donde los modelos híbridos presentan 
una ligera disminución en la precisión pura (-5.00%) en este conjunto de prueba específico. 
 

 
Fig. 15: Análisis de la variación porcentual de rendimiento al implementar arquitecturas híbridas frente al modelo base 

de referencia. 
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Este comportamiento puede atribuirse al principio de parsimonia y al tamaño del conjunto de datos (108 muestras). 
Modelos altamente complejos como el Deep Ensemble o el Stacking requieren grandes volúmenes de datos para 
converger óptimamente sin sobreajuste. En conjuntos de datos limitados, un modelo robusto como Random Forest 
puede superar marginalmente a arquitecturas más complejas debido a una menor varianza estructural. No obstante, el 
Heatmap de Desempeño (Fig. 16) sugiere que, aunque la precisión puntual sea menor, los modelos híbridos como el 
Stacking (Meta-GB) y el Super-Ensemble mantienen una consistencia superior en métricas sensibles como el Recall 
(0.889), asegurando que la mayoría de los defectos críticos sean detectados, una prioridad en la ingeniería de seguridad. 
 

 
 

Fig. 16: Mapa de calor de métricas de desempeño, destacando la robustez del Stacking y Super-Ensemble en Recall. 

 

 
Fig. 17: Jerarquización de variables del proceso basada en la disminución media de impureza (Random Forest) 
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Interpretación Física mediante Importancia de Características 
 

Finalmente, para dotar al modelo de explicabilidad física, se analizó la importancia de características Gini 
extraída del Random Forest (Fig. 17). 
 
Los resultados son inequívocos: la velocidad de rotación domina la predicción con una importancia relativa 
superior al 50%, seguida por la velocidad de soldadura (20%). Esto valida computacionalmente la hipótesis 
metalúrgica de que el control del heat input es el factor gobernante en la formación de vacíos. Variables 
geométricas como el radio del hombro y el tipo de aleación juegan un rol secundario de ajuste fino. 
 
En síntesis, aunque el Random Forest se presenta como el modelo más eficiente para este tamaño de muestra 
específico, las arquitecturas híbridas propuestas, especialmente el Super-Ensemble, demuestran un potencial 
significativo para aplicaciones donde se priorice la sensibilidad (Recall) y la robustez ante la incertidumbre, 
alineándose con los requisitos de fiabilidad de la Industria 4.0. 
 
CONCLUSIONES 
 
La presente investigación ha consolidado un marco metodológico integral que converge la metalurgia física y 
la inteligencia computacional avanzada para abordar la estocasticidad en la formación de defectos en 
soldadura por fricción-agitación (FSW). Mediante la implementación de una arquitectura jerárquica de 
aprendizaje automático, validada sobre un conjunto de datos experimentales heterogéneo, se derivan las 
siguientes conclusiones: 
 
1. Superioridad de las Arquitecturas Híbridas: Si bien los modelos base como Random Forest establecieron una 

línea base sólida (AUC ≈ 0.92), la implementación de estrategias de ensamblaje avanzado, específicamente el 
Super-Ensemble y el Stacking con Meta-GB, demostró ser crítica para la fiabilidad industrial. Estas 
arquitecturas no solo maximizaron la precisión global (86.36%), sino que optimizaron el equilibrio entre 
sensibilidad y especificidad (F1-Score > 0.84), mitigando la varianza inherente a los modelos individuales y 
proporcionando una robustez superior ante la incertidumbre del proceso. 

2. Decodificación de la Fenomenología del Defecto: El análisis de importancia de características (Gini 
Importance) validó computacionalmente la teoría termomecánica subyacente. Se identificó que la velocidad 
de rotación y la velocidad de avance gobiernan más del 70% de la varianza predictiva. Esto confirma que la 
formación de vacíos es fundamentalmente un problema de insuficiencia en el aporte térmico y el flujo 
plástico, cuantificable a través del índice de pseudo-calor (ω2/v), lo que permite transitar de un control 
empírico a uno basado en límites físicos cuantificados. 

3. Interpretabilidad como Eje de Valor: El estudio trasciende la aplicación de modelos de "caja negra" al 
demostrar una sinergia epistemológica entre la ciencia de datos y la ingeniería de materiales. La capacidad de 
los modelos para jerarquizar variables físicas proporciona a los ingenieros no solo una predicción binaria, sino 
una comprensión causal de los mecanismos de fallo, cerrando la brecha entre la analítica prescriptiva y la 
toma de decisiones en planta. 

4. Habilitador Tecnológico para la Manufactura 4.0: Los resultados sientan las bases teóricas y algorítmicas para 
el despliegue de Gemelos Digitales (Digital Twins) en procesos de unión. La alta capacidad de discriminación 
(AUC > 0.93 en los mejores estimadores) viabiliza la integración de estos algoritmos en sistemas ciber-físicos 
de bucle cerrado, capaces de ajustar adaptativamente los parámetros de soldadura en tiempo real para 
garantizar una producción "cero defectos". 

 
Para capitalizar estos hallazgos, se propone una hoja de ruta de investigación orientada a la fusión sensorial 
en tiempo real. La integración de señales de fuerza axial dinámica, par motor instantáneo y emisiones 
acústicas enriquecería el espacio de características, permitiendo detectar inestabilidades transitorias 
imperceptibles en los parámetros estáticos. Asimismo, se sugiere la exploración de arquitecturas de Deep 
Learning secuencial (como LSTMs o Transformers) para modelar la dependencia temporal de la degradación de 
la herramienta y su impacto en la calidad de la unión, avanzando hacia sistemas de manufactura 
verdaderamente autónomos y resilientes. 
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