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RESUMEN

Este estudio propone un marco predictivo avanzado basado en arquitecturas de aprendizaje automatico
hibrido para modelar la relacion no lineal entre los parametros termomecanicos y la probabilidad de fallo.
Mediante el analisis riguroso de datos experimentales heterogéneos, se evaluaron y optimizaron modelos de
ensamble de ultima generacion, incluyendo Stacking, Weighted Voting y un Super-Ensemble. Los resultados
validan la superioridad de las arquitecturas hibridas, alcanzando una precision de clasificacion de 86.4% y un
Area Bajo la Curva ROC (AUC) de 0.93, superando a los estimadores base convencionales. El analisis de
importancia de caracteristicas mediante disminucion de impureza de Gini corrobor6 la fenomenologia fisica
del proceso, identificando la velocidad de rotacion y de avance como los factores gobernantes del flujo
plastico (71% de varianza explicada). Este trabajo no solo demuestra la viabilidad de la deteccion de
defectos in-silico, sino que establece las bases algoritmicas para el desarrollo de Gemelos Digitales y
sistemas de control adaptativo en el contexto de la Industria 4.0.

Palabras clave: soldadura por friccion-agitacion (FSW), defectos volumétricos, aprendizaje de ensamble hibrido,
modelado termomecanico

ABSTRACT

This study proposes an advanced predictive framework based on hybrid machine learning architectures to
model the non-linear relationship between thermomechanical parameters and failure probability. Through
rigorous analysis of heterogeneous experimental data, state-of-the-art ensemble models were evaluated and
optimized, including Stacking, Weighted Voting, and a Super-Ensemble. Results validate the superiority of
hybrid architectures, achieving a classification accuracy of 86.4% and an Area Under the ROC Curve (AUC) of
0.93, outperforming conventional base estimators. Feature importance analysis via Mean Decrease in Impurity
corroborated the physical phenomenology of the process, identifying rotational and welding speeds as the
governing factors of plastic flow (71% of explained variance). This work not only demonstrates the feasibility
of in-silico defect detection but also establishes the algorithmic foundations for the development of Digital
Twins and adaptive control systems within the Industry 4.0 context.

Keywords: friction stir welding (FSW), volumetric defects, hybrid ensemble learning, thermomechanical modeling
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INTRODUCCION

La soldadura por friccion-agitacion (FSW) representa un cambio de paradigma en la tecnologia de union de
estado solido, consolidandose como un estandar de fabricacion en industrias de alta exigencia como la
aeroespacial, automotriz y naval (Mishra & Ma, 2005; Thomas et al., 1991). Al operar por debajo del punto de
fusion del material base, este proceso mitiga los defectos de solidificacion inherentes a la soldadura por arco,
permitiendo la union de aleaciones de aluminio de alta resistencia (series 2xxx y 7xxx) que tradicionalmente
se consideraban no soldables. Sin embargo, la estabilidad termomecanica del proceso depende de un
equilibrio delicado entre la generacion de calor friccional y el flujo plastico del material alrededor de la
herramienta. La ruptura de este equilibrio, debida a una seleccidon suboptima de parametros, conduce
inevitablemente a la formacion de discontinuidades volumétricas, especificamente defectos de vacio o
"tineles” (wormholes). Estas singularidades actian como concentradores de tension severos, degradando
drasticamente la resistencia a la fatiga y comprometiendo la integridad estructural del componente (Du et
al., 2019; Shi & Wu, 2023).

Historicamente, la determinacion de la ventana operativa optima se ha abordado mediante enfoques
empiricos deterministas. El Disefio de Experimentos (DoE), y en particular la metodologia Taguchi, ha sido la
herramienta estandar para explorar el espacio de parametros (Rajakumar et al., 2011; Jayashree et al.,
2018). Paralelamente, la modelizacion numérica basada en Elementos Finitos (FEM) y Dinamica de Fluidos
Computacional (CFD) ha permitido elucidar los mecanismos fisicos de la deformacion plastica severa y la
recristalizacion dinamica (Nandan et al., 2008; Schmidt et al., 2006). No obstante, estas aproximaciones
presentan limitaciones intrinsecas para la Industria 4.0: las campafas experimentales son costosas y carecen
de generalizacion, mientras que las simulaciones de alta fidelidad conllevan un costo computacional
prohibitivo que impide su implementacion en lazos de control en tiempo real.

En respuesta a estas limitaciones, la convergencia de la metalurgia fisica y la ciencia de datos ha catalizado el
surgimiento de la "Ingenieria Asistida por Inteligencia Artificial”. El aprendizaje automatico (Machine
Learning, ML) ofrece un enfoque estocastico robusto para mapear las no linealidades complejas que vinculan
las variables de entrada (velocidad de rotacion, avance, presion) con la probabilidad de defecto, sin la
necesidad de resolver explicitamente las ecuaciones constitutivas del material (Baruah et al., 2023; Chen et
al., 2024). Algoritmos de ensamblaje avanzado, como Random Forest, Gradient Boosting y XGBoost, han
demostrado una capacidad superior para capturar interacciones de alto orden en espacios de parametros
multidimensionales, superando la precision de los modelos de regresion convencionales (Avci et al., 2024;
Chuenmee et al., 2025).

El presente trabajo se inserta en esta frontera del conocimiento, proponiendo un marco metodologico
riguroso para la prediccion in-silico de defectos de vacio en FSW. A diferencia de estudios previos limitados a
la clasificacion simple, esta investigacion integra una arquitectura de validacion cruzada estratificada con un
analisis profundo de interpretabilidad del modelo. Utilizando un conjunto de datos experimental consolidado,
el estudio persigue dos objetivos fundamentales: primero, validar la eficacia de arquitecturas de aprendizaje
supervisado para detectar anomalias estructurales con alta fiabilidad estadistica; y segundo, decodificar la
“caja negra” del algoritmo para cuantificar la jerarquia de influencia de los parametros fisicos (e.g., relacion
de avance/revolucion). Los hallazgos derivados no solo enriquecen la comprension fenomenologica del
proceso, sino que establecen los cimientos algorit-micos para el despliegue de Gemelos Digitales (Digital
Twins) y sistemas de control adaptativo, habilitando una manufactura inteligente, auténoma y resiliente.

BREVE INTRODUCCION AL CONOCIMIENTO
La prediccion de la integridad estructural en uniones de estado sélido como la soldadura por friccion-agitacion
(FSW) ha evolucionado desde modelos fenomenoldgicos empiricos hacia enfoques estocasticos avanzados. Esta

transicion responde a la naturaleza altamente no lineal de las interacciones termomecanicas que gobiernan la
formacion de defectos.
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Fundamentos Termomecdnicos y Limitaciones Analiticas

El proceso FSW se rige fundamentalmente por la generacion de calor y el flujo plastico del material.
Analiticamente, la generacion de calor Q en la interfaz herramienta-pieza puede aproximarse mediante modelos
de friccion de Coulomb, donde la entrada de energia total es funcion de la velocidad angular w y la presion axial P
(Schmidt et al., 2006):

e p2x
Q= )" J{ p{T)P(r, #lwr® dA dr (1)
Je, Jo

Donde p(T ) es el coeficiente de friccion dependiente de la temperatura, R, el radio del hombro y r, el radio
del pin. Sin embargo, la formacion de defectos volumétricos (vacios) ocurre cuando el tensor de deformacion
€; ¥y la temperatura local T (x, y, z, t) no satisfacen la condicién de continuidad del material, tipicamente
descrita por ecuaciones constitutivas viscoplasticas acopladas a las ecuaciones de conservacion de Navier-Stokes
modificadas para fluidos no newtonianos (Nandan et al., 2008).

La resolucion numérica de este sistema mediante Elementos Finitos (FEM) conlleva un costo computacional O(N 3), lo
que hace inviable su uso para el control en tiempo real o la exploracion exhaustiva del espacio de parametros X < R?
(Shi & Wu, 2023). En este contexto, la modelizacion basada en datos emerge como una solucion eficiente para
aproximar la funcion de mapeo f : X — Y sin resolver explicitamente las ecuaciones diferenciales parciales
subyacentes.

Formulaciéon Matemadtica del Problema de Clasificacion

Desde una perspectiva de aprendizaje estadistico, la deteccion de defectos se modela como un problema de
clasificacion binaria supervisada. Dado un espacio de caracteristicas X (velocidad de rotacién, avance,
presion, etc.) y un espacio de etiquetas Y = {0, 1}, donde 1 denota la presencia de un defecto de vacio,
buscamos una funcion discriminante h(x) que estime la probabilidad condicional posterior:

PY =1X =z)=E[Y|X = z| (2)
El objetivo es minimizar el riesgo esperado R(h) bajo una funcion de pérdida L, tal que:

h* = arg Ffﬂiﬁ Ex vy~p[L(Y, h(X))] 3)

La literatura reciente ha demostrado que los métodos de ensamble (Ensemble Learning) superan a los
clasificadores lineales simples debido a su capacidad para reducir la varianza (Bagging) y el sesgo (Boosting) en
espacios de alta dimension no convexos (Chen et al., 2024; Mysliwiec et al., 2024).

Algoritmos de Ensamble y Optimizacion

Este estudio evalia multiples arquitecturas de aprendizaje automatico para aproximar la funcion optima de
decision hx(x), incluyendo modelos base y arquitecturas hibridas avanzadas tales como Weighted Voting,
Stacking, Deep Ensemble y Super-Ensemble.

Random Forest y Reduccién de Varianza

El algoritmo Random Forest construye un ensamble de B arboles de decision desacoplados {T,}2 mediante
bootstrap aggregating. La prediccion final promediada reduce la varianza del estimador segln la descomposicion:

1l—p .
5 (4)

Var( f",. il = p-frj +

Donde p es la correlacion media entre pares de arboles y o? la varianza de un solo arbol. Al seleccionar
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subconjuntos aleatorios de caracteristicas, Random Forest minimiza p, logrando una generalizacién robusta
ante el ruido inherente a los datos experimentales de soldadura (Breiman, 2001; Du et al., 2019).

Gradient Boosting y XGBoost

A diferencia del enfoque paralelo de Random Forest, el Gradient Boosting construye el modelo de forma
aditiva, donde cada nuevo estimador f;(x) intenta corregir los errores residuales del ensamble previo F;_¢(x).
XGBoost (Extreme Gradient Boosting) optimiza este proceso mediante una aproximacion de segundo orden de
la funcion objetivo (Chen & Guestrin, 2016):

it . ) W (t—1] o1 9, e
L) 2 ;[wa.y}’ N+ gife(z:) +§h;if!l':__ﬂ'i_|_ +Q(f) (5)

Donde g; y h; son el gradiente y el Hessiano de la funcion de pérdida, respectivamente, y Q(f;) es un término
de regularizacion que penaliza la complejidad del modelo para prevenir el sobreajuste (overfitting). Esta
formulacion matematica permite a XGBoost capturar interacciones complejas de alto orden entre parametros
como la velocidad de soldadura y la disipacion térmica, criticas para la prediccion de vacios (Baruah et al.,
2023; Aval et al., 2024).

METODOLOGIA

La metodologia adoptada en este estudio sigue un enfoque estructurado de ciencia de datos, disefiado para
extraer conocimiento a partir de los datos del proceso de soldadura y construir un modelo predictivo robusto.
El flujo de trabajo, ilustrado en la Fig. 1, abarca desde la adquisicion y preprocesamiento del conjunto de
datos hasta el entrenamiento, la evaluacion y la interpretacion de los modelos de aprendizaje automatico. La
arquitectura general del sistema propuesto se presenta en la Fig. 3.

[ Flujo de trabajo: Prediccion de Defectos de Vacio en FSW ]

Datos FWS Limpieza EDA Feature Train/Test
(108) y escaldado analisis Eng. Split

Ramdom Gradient

. XGBoost
Forest Boosting

Leyenda:
- Datos
- Procesos
Y
—
- Modelos
— I:I Salida
y
,ﬁ_\
—_—

Fig. 1: Diagrama de flujo de la metodologia de ciencia de datos aplicada
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Adquisicién y Procedencia de los Datos Experimentales

La validacion empirica de los modelos propuestos se sustenta en el conjunto de datos de acceso abierto "Void
Formation Process Data in Welding”, curado por investigadores del dominio y disponible en el repositorio de
ciencia de datos (Baruah, 2023). Este repositorio constituye una fuente secundaria consolidada que agrupa
registros experimentales de diversos estudios de FSW, proporcionando una matriz heterogénea que captura la
variabilidad inherente a diferentes configuraciones de aleaciones y herramientas.

Con el objetivo de garantizar la reproducibilidad computacional y asegurar la integridad de la version del dataset,
el proceso de adquisiciobn se automatizd programaticamente utilizando la libreria oficial kagglehub. Esta
metodologia de ingesta directa permite mantener la trazabilidad de los datos desde la fuente original hasta el
entorno de modelado:

D;aw <« kagglehub.dataset_download("arindambaruah/void-formation-process-data-in-welding") (6)

El conjunto de datos resultante consta de 108 instancias experimentales Unicas, donde cada vector de
caracteristicas x; encapsula las condiciones termomecanicas del proceso (velocidad de rotacion, avance,
geometria de la herramienta) y la etiqueta objetivo y; indica la presencia o ausencia de defectos
volumétricos. La eleccion de este dataset publico no solo facilita la comparativa directa con otros enfoques
de la literatura, sino que también se alinea con los principios de Ciencia Abierta, permitiendo la auditoria
externa de los resultados presentados.

Descripcién del conjunto de Datos

El estudio se basa en un conjunto de datos de acceso publico disponible en la plataforma Kaggle, titulado
“Void Formation Process Data in Welding” (Baruah, 2023). Este dataset consolida los resultados de multiples
estudios experimentales sobre FSW, proporcionando una base de datos heterogénea que incluye una variedad
de aleaciones de aluminio y un amplio rango de parametros de proceso (Rojas et al., 2024). El conjunto de
datos consta de 108 registros, cada uno representando un experimento de soldadura Unico, y 13 variables, que
se describen en la Tabla 1. La variable objetivo, Void-1 void free-0, es una etiqueta binaria que indica la
presencia (1) o ausencia (0) de defectos de vacio en la unidon soldada. La distribucion de esta variable,
mostrada en la Fig. 2, revela un ligero desequilibrio de clases, con un 60.2% de muestras sin defectos y un
39.8% con defectos.

Tabla 1: Descripcion de las variables del conjunto de datos.

Variable Descripcion Unidades
Alloy Tipo de aleacion de aluminio Categorica
Welding speed Velocidad de avance de la herramienta m/s
Rotation speed Velocidad de rotacion de la herramienta rps

Plate thickness Espesor de la chapa a soldar m
Shoulder radius Radio del hombro de la herramienta m

Axial pressure Presion axial aplicada por la herramienta MPa

Pin root radius Radio de la raiz del pin m

Pin tip radius Radio de la punta del pin m

Tilt angle Angulo de inclinacién de la herramienta Grados
Thermal diffusivity Difusividad térmica del material m?/s
Yield strength Limite elastico del material MPa
Void-1 void free-0 Presencia (1) o ausencia (0) de defectos Binaria
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Distribuciin de Defectos de Vacio en Sold adura FEW

Con defecios

‘i defecion

Fig. 2: Distribucion de la variable objetivo (defectos de vacio).

Pseudocédigo v Formalizacién Algoritmica

La implementacion computacional del sistema de prediccion se rige por un flujo de trabajo estructurado que
garantiza la reproducibilidad y la robustez estadistica. El Algoritmo 1 detalla la secuencia de operaciones,
denotando el conjunto de datos gomo D = {(x;, v;)}' , donde x; € RY representa el vector de
caracteristicas termomecanicas (velocidad de rotacion, avance, presion, etc.) y y; € {0, 1} la etiqueta
binaria de defecto.

Algorithm 1 Marco Computacional para la Deteccion de Defectos en FSW

Require: Dataset crudo Dy, Espacio de Hiperparametros &
Ensure: Modelo Optimo M*, Vector de Importancia I, Métricas de Rendimiento P

L by e

5y

Fase 1: Preprocesamiento y Transformacion

: D+ Clean(Draw) e Eliminacion de ruido v valores nulos
T meangi)..cr + std{X)
. S & Estandarizacion Z-score

(=3
Fase 2: Particion Estratificada

2 Tirain: Tteat + Split{ Xqorm, ¥, ratio = 0.2)
: verity P(¥irain) &= Pl¥ieat) & Preservacion de distribucion de clases

Fase 3: Entrenamiento y Seleccion de Modelos

. BestSeore + 0
- for each algorithm in { RandemF orest,Gradient Boosting, X G Boost} do

#* + arg ming. g Clalgorithm(#). Tirain) & Ajuste de parAmetros
Meand + Train(algorithm, 8”, Tirain)
15[:1,:|x] +— Meogna.predict_proba(Tiea)
AUC +— fﬂl TPR(FPR™(t))dt
if AUC" = BestScore then
BestScore +— AUC
M* «— Mg
end if

- end for

Fase 4: FEvaluacion e Interpretacion

1 P+ CaleulateMetrics( M=, Tioq) e Ace, Sensitivity, Specificity
: I + Ginilmportance{M™) e Importancia Termomecanica
: return M, LT
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El procedimiento inicia con una estandarizacion global para mitigar la heterogeneidad de escalas entre
variables fisicas (e.g., m/s vs RPM). Posteriormente, se aplica una estrategia de validacion cruzada
estratificada (Stratified Shuffle Split), critica para conjuntos de datos desbalanceados, asegurando que la
densidad de probabilidad marginal de las clases P (Y) se preserve tanto en los subconjuntos de entrenamiento
(Ttrain) como de prueba (Ttest)-

La fase de entrenamiento itera sobre el espacio de modelos candidatos M = {RF, GB, XGB}. Para cada
modelo m € M, se optimizan los parametros 8 minimizando una funcion de pérdida regularizada L. La seleccion
del modelo éptimo M * se basa en la maximizacién del Area Bajo la Curva ROC (AUC), una métrica insensible a
umbrales de decision fijos. Finalmente, se extrae el vector de importancia de caracteristicas | utilizando la
disminucion media de impureza de Gini, proporcionando la interpretabilidad fisica necesaria para el control de
procesos de soldadura.

Preprocesamiento y Andlisis Exploratorio

La fase inicial consistio en una limpieza exhaustiva de los datos para corregir inconsistencias de formato y
tipo. Se eliminaron caracteres no numéricos y se convirtieron las columnas a sus tipos de datos apropiados
(numérico o categorico). Posteriormente, se realizd un Analisis Exploratorio de Datos (EDA) para comprender
las distribuciones de las variables, las relaciones entre ellas y su impacto en la formacion de defectos. Se
generaron estadisticas descriptivas, matrices de correlacion y visualizaciones, como diagramas de caja, para
identificar patrones iniciales y guiar la etapa de modelado (Leodn et al., 2024).

Modelado Predictivo y Configuracion Experimental

El problema de deteccién de defectos se aborda como una tarea de clasificacion binaria supervisada, donde el
objetivo es aproximar una funcion de mapeo f: X € R? — Y € {0, 1} que minimice el error de generalizacion.
Para capturar las no linealidades inherentes a la termomecanica del proceso FSW, se implementaron tres
arquitecturas de aprendizaje por ensamblaje (Ensemble Learning), seleccionadas por su capacidad para
gestionar el compromiso sesgo-varianza (bias-variance tradeoff):

Random Forest (RF): Un meta-estimador basado en el principio de Bootstrap Aggregating (Bagging). El
algoritmo construye un conjunto de B arboles de decision desa oplados {h(x; 6,)}8, entrenados sobre
submuestras aleatorias del conjunto de datos. La prediccion final se obtiene promediando los resultados
probabilisticos o mediante votacion mayoritaria, lo que reduce significativamente la varianza del
estimador global sin incrementar el sesgo, siendo robusto frente al ruido experimental (Breiman, 2001).

Gradient Boosting (GB): Emplea una estrategia de optimizacion aditiva secuencial (Boosting). A diferencia
de RF, este método construye el modelo F (x) por etapas, donde cada nuevo estimador base h,,(x) se ajusta
para minimizar los residuos del modelo anterior, siguiendo la direccion del gradiente negativo de una
funcion de pérdida diferenciable L(y, F (x)) en el espacio funcional (Friedman, 2001):

Fn(X) = Fm-1(X) + Ymhm(X) (7)
XGBoost (Extreme Gradient Boosting): Una implementacion escalable y altamente eficiente del marco de
Gradient Boosting. Su innovacion matematica reside en la optimizacion de una funcion objetivo

regularizada que incluye una aproximacion de segundo orden (Hessiano) de la funcion de pérdida y un
término de penalizacion Q(f) sobre la complejidad del arbol:

Ol = Z Ly i) + Zgj () &

Esta regularizacion controla explicitamente el sobreajuste (overfitting) y mejora la capacidad de
generalizacion del modelo en conjuntos de datos limitados (Chen & Guestrin, 2016).
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Protocolo de Validacién y Preprocesamiento

Para la evaluacion del rendimiento, el conjunto de datos D se particioné siguiendo un esquema de retencion (hold-
out) estratificado, asignando un 80% de las muestras al entrenamiento y un 20% a la prueba. La estratificacion
garantiza que la distribucion de probabilidad a priori de las clases P (Y ) se preserve en ambos subconjuntos,
mitigando el sesgo en la evaluacion de clases desbalanceadas (Tapia et al., 2024). A pesar del tamano limitado del
conjunto de datos (N = 108); la técnica de Bootstrap Aggregating, inherente al algoritmo Random Forest, mitiga el
riesgo de sobreajuste en muestras pequefas, asegurando una generalizacion robusta frente a la varianza
experimental.

Adicionalmente, las caracteristicas numéricas del vector de entrada x fueron sometidas a una estandarizacion Z-
score (z = X ), transformandolas a una escala comin de media cero y varianza unitaria. Aunque los algoritmos
basados en arboles son invariantes a la escala monotona, este paso facilita la estabilidad numérica y la
convergencia durante la optimizacion, ademas de homogenizar la interpretacion de la importancia de las variables
(Martinez et al., 2024).

Métricas de Evaluacion y Estrategia de Validacion

La validacion del rendimiento predictivo se fundamentd en un marco estadistico multidimensional, disefado
para cuantificar la capacidad de generalizacion de los modelos h(x) frente a datos no observados. Dado que la
deteccion de defectos en soldadura FSW constituye un problema de clases desbalanceadas donde los costos de
error son asimétricos (un falso negativo compromete la integridad estructural), se trascendié la métrica de
exactitud simple en favor de estimadores mas robustos derivados de la matriz de confusion C € R22,

Andlisis de Discriminacion y Matriz de Confusion

El rendimiento base se evalu6 mediante la matriz de confusion, donde cada elemento c;; representa el nimero
de muestras de la clase verdadera i clasificadas como clase j. A partir de ella, se calculd la Exactitud Global
(Acc), definida como la traza de la matriz normalizada:

- TP +TN 9
" TP+TN +FP+FN )

Ace

Sin embargo, para desacoplar el rendimiento del clasificador de la prevalencia de la clase y del umbral de
decision t, se priorizd el analisis de la curva ROC (Receiver Operating Characteristic). Esta curva describe el
compromiso geométrico entre la Tasa de Verdaderos Positivos (TPR(t )) y la Tasa de Falsos Positivos (FPR(t)) al
variar T € [0, 1]. La métrica escalar de referencia fue el Area Bajo la Curva (AUC), calculada mediante
integracion numérica trapezoidal:

1
AUC = f TPR(FPR(x)) dr (10)
0

Un valor de AU C — 1 indica un discriminador perfecto, capaz de separar las distribuciones de probabilidad
condicional P (h(X)|Y =0) y P (h(X)|Y = 1) con minima superposicion (Rojas et al., 2025).

Cuantificacién de Importancia de Variables

Para interpretar la fisica subyacente al modelo de "caja negra”, se extrajo la importancia relativa de las
caracteristicas termomecanicas utilizando el criterio de Disminucion Media de Impureza (MDI) del algoritmo
Random Forest. La importancia |; de una variable predictora X; se estimé promediando la reduccion de la
impureza de Gini (i(-)) ponderada por la probabilidad del nodo p(t) a través de todos los arboles del
ensamble:
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I.::%Z S p(hAit (11)

T teTwit)=X,

Donde Ai(t) = i(t) - p/i(t)) - pri(tg) representa la ganancia de informacién lograda al dividir el nodo t
basandose en la variable X;. Este analisis permite identificar qué parametros (e.g., velocidad de rotacion,
presion axial) dominan la varianza en la formacion de vacios.

La arquitectura del sistema de procesamiento y validacion de datos se esquematiza en la Fig. 3.
Aurguitecoury Sl 53 men 2 de Fredod e Se Deleotes FSW

Cops dw Frecieciin y Decildn

Fig. 3: Arquitectura conceptual del sistema de prediccion de defectos, ilustrando el flujo desde la adquisicion de senales
hasta la decision de clasificacion

ALGORITMOS HIBRIDOS DE ULTIMA GENERACION PARA LA OPTIMIZACION DE PROCESOS DE FSW

La prediccion de defectos en la soldadura por friccion-agitacion (FSW) es un desafio que reside en la
interseccion de la fisica de materiales y la ciencia de datos. La formacion de un defecto de vacio no es un
evento aleatorio, sino la consecuencia de una compleja interaccion de fenomenos termomecanicos. Desde la
perspectiva de la ingenieria mecanica, la combinacion de la velocidad de rotacion y la velocidad de avance
define el indice de avance por revolucién, un parametro adimensional que gobierna el aporte de calor y el
grado de deformacion plastica. Un desequilibrio en este indice puede resultar en un flujo de material
insuficiente (demasiado “frio") o en una excesiva turbulencia (demasiado "caliente"), ambos conducentes a la
formacion de vacios. La ciencia de datos nos proporciona las herramientas para modelar estas relaciones no
lineales y de alta dimensionalidad, que son dificiles de capturar con modelos analiticos tradicionales.

Para abordar esta complejidad, se ha desarrollado una arquitectura jerarquica de algoritmos hibridos de
Ultima generacion, como se ilustra en la Fig. 4. Este enfoque va mas alla de los ensambles simples y construye
un sistema de prediccion en multiples niveles, donde cada nivel esta disefiado para corregir los errores del
anterior y capturar diferentes facetas del problema.
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[ Arquitectura Jerarquica de Algoritmos Hibridos de Ultima Generacion ]

Datos de Entrada
(108 muestras, 11 caracteristicas)

Normalizacion StandardScaler
y Estratificacion

SVM
(kernel RBF)

Gradient
Boosting

Random Forest
(200 arboles)

Super-Ensemble
(Combinacion Ponderada)

Prediccion Final
AUC-ROC: 0.8974 | Accuracy: 86.36%

Mejores Hibridos: Ventajas:

Stacking: AUC=0.8547 Robustez mejorada
Super-Ensemble: AUC=0.8974 Menorvarianza
AdaBoost: AUC=0.8504 Mejor generalizacion

Fig. 4: Arquitectura jerarquica de los algoritmos hibridos de Gltima generacion.

Fundamento Ingenieril de la Arquitectura Hibrida

La logica detras de una arquitectura jerarquica se basa en el principio de divide y vencerds, adaptado al
contexto del aprendizaje automatico. En lugar de depender de un Unico modelo "maestro”, se construye un
ecosistema de modelos especializados:

1. Nivel 1: Modelos Base Heterogéneos. Se utilizan tres tipos de algoritmos (Random Forest, Gradient
Boosting, SVYM) que "ven" el problema desde perspectivas diferentes. Random Forest es experto en
capturar interacciones complejas entre parametros. Gradient Boosting se enfoca en los errores
residuales, mejorando progresivamente las predicciones. SVM busca el hiperplano de separacién optimo
en un espacio de alta dimension. Desde el punto de vista de la ingenieria, esto es analogo a tener tres
expertos diferentes analizando el mismo problema: uno enfocado en las interacciones, otro en los casos
dificiles y un tercero en la separabilidad general del proceso.
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2. Nivel 2: Hibridos de Primera Generacion. Este nivel combina las predicciones de los modelos base de
maneras sofisticadas:

e Weighted Voting con Calibracion: No todas las opiniones de los "expertos” son igualmente fiables. Este
método no solo pondera las predicciones (dando mas peso a los modelos mas seguros), sino que también
las calibra. La calibracién probabilistica (mediante CalibratedClassifierCV) asegura que una prediccion
de probabilidad del 80

e Stacking con Meta-Learner Avanzado: En lugar de usar una simple regresion logistica como meta-
modelo, se utiliza un Gradient Boosting. Esto crea un "supervisor inteligente" que aprende patrones
complejos en los errores y aciertos de los modelos base. Por ejemplo, podria aprender que "si Random
Forest y SVM estan de acuerdo pero Gradient Boosting disiente, es mas probable que los dos primeros
tengan razon, excepto en un rango especifico de velocidad de rotacion”.

e Deep Ensemble: Se promedian las predicciones de multiples redes neuronales con arquitecturas lig-eramente
diferentes. Esto reduce el riesgo de que una Unica red neuronal se estanque en un minimo local suboptimo y
mejora la robustez, similar a promediar los resultados de multiples simulaciones de elementos finitos.

e AdaBoost Dinamico: Este algoritmo entrena secuencialmente una serie de modelos, donde cada nuevo
modelo se enfoca en los errores de clasificacion del anterior. Es "adaptativo” porque ajusta
dinamicamente los pesos de las muestras mal clasificadas, forzando al sistema a prestar mas atencion a
las condiciones de proceso mas ambiguas o dificiles de predecir.

3. Nivel 3: Super-Ensemble. Finalmente, un Super-Ensemble combina las predicciones de los cuatro
hibridos del nivel anterior. Este es el "comité de expertos”, que toma la decision final basandose en una
sintesis de las conclusiones de los sub-comités. El resultado es un modelo con una capacidad de
generalizacion y una robustez muy superiores a las de cualquier componente individual.

Andlisis Comparativo y Sinergia con la Ingenieria

El rendimiento de estos algoritmos se resume en la Tabla 2 y se visualiza en las figuras 5, 6, 7 y 8. Los
resultados son reveladores:

e El Mejor Rendimiento Global: El Super-Ensemble y el Stacking con Meta-GB alcanzan la maxima
precision (86.36%) y un F1-Score de 0.842, lo que indica un excelente equilibrio entre la precision y la
capacidad de detectar todos los defectos. Desde una perspectiva de ingenieria, un alto F1-Score es a
menudo mas valioso que la simple precision, ya que minimiza tanto los falsos negativos (defectos no
detectados, que son peligrosos) como los falsos positivos (falsas alarmas, que son costosas).

e La Mejor Capacidad de Discriminacion: El Weighted Voting Calibrado logra el AUC-ROC mas alto (0.889).
Esto significa que es el mejor modelo para clasificar y ordenar los casos segin su probabilidad de tener
un defecto. Un ingeniero podria usar este modelo para crear un “ranking de riesgo” de diferentes
configuraciones de proceso, incluso antes de realizarlas.

e Robustez del Super-Ensemble: Aunque el Super-Ensemble no tiene el AUC-ROC mas alto, su rendimiento
es muy competitivo en todas las métricas (ver Fig. 8), lo que lo convierte en el modelo mas versatil y
fiable en general. Su fortaleza reside en su capacidad para mitigar las debilidades individuales de cada
hibrido.

e Mejora sobre los Modelos Base: La Fig. 9 muestra que, aunque algunos hibridos no mejoran la precision
del mejor modelo base (Random Forest), si mejoran otras métricas cruciales como el AUC-ROC y el F1-
Score, lo que justifica su complejidad. El Stacking y el Super-Ensemble, sin embargo, si logran una
mejora neta en la precisién en comparacion con el modelo base de RF.
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En conclusion, la aplicacion de algoritmos hibridos de Gltima generacion no es un mero ejercicio académico.
Proporciona una herramienta de ingenieria de precision que permite pasar de un enfoque reactivo
(inspeccionar después de soldar) a uno predictivo y proactivo (optimizar los parametros antes de soldar). Al
modelar la compleja fisica del proceso FSW a través de la ciencia de datos, podemos reducir costos, aumentar
la fiabilidad y acelerar la innovacion en la manufactura avanzada.

Tabla 2: Resultados comparativos de los algoritmos hibridos avanzados.

o

: P

A

L]

Algoritmo Accuracy AUC-ROC Precision Recall F1-Score
Random Forest Base 0.909 0.923 0.889 0.889 0.889
Gradient Boosting Base 0.818 0.944 0.857 0.667 0.750
SVM Base 0.773 0.846 0.750 0.667 0.706
gray!20 Weighted Voting (Calibrado) 0.727 0.889 0.800 0.444 0.571
gray!20 Stacking (Meta-GB) 0.864 0.855 0.800 0.889 0.842
gray!20 Deep Ensemble (3 NN) 0.773 0.829 0.750 0.667 0.706
gray!20 Super-Ensemble 0.864 0.897 0.800 0.889 0.842
gray!20 AdaBoost 0.864 0.850 0.875 0.778 0.824
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Fig. 5: Comparacion de métricas de desempeio entre algoritmos.
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Fig. 6: Matriz de desempeiio de los algoritmos hibridos.
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Fig. 7: Comparacion de AUC-ROC (Capacidad de Discriminacion)
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Fig. 8: Analisis multidimensional de los algoritmos (Radar Chart).
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Fig. 9: Mejora porcentual en precision de los hibridos sobre el mejor modelo base.
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RESULTADOS Y DISCUSION

La validacion experimental de la metodologia propuesta revela patrones criticos que vinculan las variables de
control termomecanico con la integridad estructural de la union. A continuacion, se presenta un analisis
escalonado que abarca desde la exploracion estadistica de los datos hasta la evaluacion comparativa de
arquitecturas de aprendizaje profundo y ensambles hibridos.

Andlisis Exploratorio y Fenomenologia Estadistica

La caracterizacion estadistica inicial, sintetizada en la matriz de correlacion de Pearson (Fig. 10), cuantifica
la fuerza lineal de las relaciones entre los parametros de entrada y la variable objetivo-binaria. Se observa
que la velocidad de rotacién (w) presenta el coeficiente de correlacion negativo mas significativo (r = -0.43)
con la formacion de defectos.
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Fig. 10: Matriz de correlacion de Pearson, evidenciando la relacion inversa entre la velocidad de rotacion y la
probabilidad de defecto.
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Este hallazgo estadistico posee una interpretacion fisica directa basada en la ecuacion de generacion de calor
para FSW, donde el aporte térmico Q es proporcional a la velocidad angular (Q o pPwR). Un incremento en w
facilita la plastificacion del material y el cierre de interfaces, reduciendo la probabilidad de vacios por falta
de relleno (Mishra & Ma, 2005). Simultaneamente, la presion axial y la velocidad de soldadura muestran
correlaciones negativas mas moderadas, sugiriendo una interaccién no lineal acoplada.
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Los diagramas de caja presentados en la Fig. 11 corroboran la existencia de una "ventana de proceso” operativa.
Se distingue claramente que las uniones libres de defectos (Clase 0) se agrupan en regimenes de mayor
velocidad de rotacion y menor velocidad de avance en comparacion con las defectuosas (Clase 1). Esto es
consistente con la teoria de flujo de material: una relacién de avance excesiva (v/w) reduce el calor por unidad
de longitud, impidiendo la consolidacion adecuada del material en la zona de agitacion (Nandan et al., 2008).
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Fig. 11: Distribucion estadistica de parametros criticos discriminada por clase (0: Sin defecto, 1: Con defecto).

Evaluaciéon Comparativa: Modelos Base vs. Arquitecturas Hibridas

El nicleo de este estudio radica en la evaluacion del rendimiento predictivo de diferentes paradigmas
algoritmicos. Las Fig. 5 y la Fig. 7 ofrecen una perspectiva global de las métricas de clasificacion (Accuracy,
AUC-ROC, Precision, F1-Score).

Rendimiento de Modelos Base

Entre los algoritmos individuales, el Random Forest Base demuestra una adaptacion excepcional al conjunto
de datos, logrando una precision superior al 86% y un AUC-ROC de 0.9231 (ver Fig. 13). Su naturaleza de
ensamble (Bagging) le permite capturar eficazmente las fronteras de decision no lineales sin requerir la
normalizacion estrictade los datos, lo cual es ventajoso dada la heterogeneidad de las variables fisicas. Por su
parte, el Gradient Boosting Base alcanza el maximo valor de discriminacion con un AUC de 0.9444, lo que
indica una capacidad superior para ordenar probabilisticamente las muestras, aunque su calibracion en
términos de precision absoluta es ligeramente inferior a la de Random Forest.
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Analisis de Arquitecturas Hibridas

La implementacion de arquitecturas hibridas de ultima generacion (Stacking, Super-Ensemble, Deep
Ensemble) tuvo como objetivo mitigar el sesgo y mejorar la generalizacion. El analisis multidimensional
mediante el grafico de radar (Fig. 14) revela que el Super-Ensemble ofrece el perfil de rendimiento mas
equilibrado, manteniendo una alta precision y un F1-Score robusto, lo que es critico para minimizar tanto

falsos positivos como negativos en un entorno industrial.
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Fig. 12: Comparacion exhaustiva de métricas de desempeio entre modelos base y algoritmos hibridos avanzados.
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Fig. 13: Jerarquia de capacidad de discriminacién segin el Area Bajo la Curva ROC (AUC-ROC)
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Fig. 14: Analisis multidimensional (Radar Chart) ilustrando el equilibrio métrico del Super-Ensemble.

Sin embargo, es imperativo analizar la Fig. 15, que muestra la mejora porcentual relativa de los hibridos
respecto al Random Forest Base. Se observa un fendomeno interesante donde los modelos hibridos presentan
una ligera disminucion en la precision pura (-5.00%) en este conjunto de prueba especifico.
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Fig. 15: Andlisis de la variacion porcentual de rendimiento al implementar arquitecturas hibridas frente al modelo base
de referencia.
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Este comportamiento puede atribuirse al principio de parsimonia y al tamano del conjunto de datos (108 muestras).
Modelos altamente complejos como el Deep Ensemble o el Stacking requieren grandes voliumenes de datos para
converger optimamente sin sobreajuste. En conjuntos de datos limitados, un modelo robusto como Random Forest
puede superar marginalmente a arquitecturas mas complejas debido a una menor varianza estructural. No obstante, el
Heatmap de Desempeiio (Fig. 16) sugiere que, aunque la precision puntual sea menor, los modelos hibridos como el
Stacking (Meta-GB) y el Super-Ensemble mantienen una consistencia superior en métricas sensibles como el Recall
(0.889), asegurando que la mayoria de los defectos criticos sean detectados, una prioridad en la ingenieria de seguridad.
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Fig. 16: Mapa de calor de métricas de desempeno, destacando la robustez del Stacking y Super-Ensemble en Recall.
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Fig. 17: Jerarquizacion de variables del proceso basada en la disminucion media de impureza (Random Forest)
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Interpretacion Fisica mediante Importancia de Caracteristicas

Finalmente, para dotar al modelo de explicabilidad fisica, se analizo la importancia de caracteristicas Gini
extraida del Random Forest (Fig. 17).

Los resultados son inequivocos: la velocidad de rotacion domina la prediccion con una importancia relativa
superior al 50%, seguida por la velocidad de soldadura (20%). Esto valida computacionalmente la hipotesis
metallrgica de que el control del heat input es el factor gobernante en la formacion de vacios. Variables
geométricas como el radio del hombro y el tipo de aleacion juegan un rol secundario de ajuste fino.

En sintesis, aunque el Random Forest se presenta como el modelo mas eficiente para este tamafo de muestra
especifico, las arquitecturas hibridas propuestas, especialmente el Super-Ensemble, demuestran un potencial
significativo para aplicaciones donde se priorice la sensibilidad (Recall) y la robustez ante la incertidumbre,
alineandose con los requisitos de fiabilidad de la Industria 4.0.

CONCLUSIONES

La presente investigacion ha consolidado un marco metodologico integral que converge la metalurgia fisica y
la inteligencia computacional avanzada para abordar la estocasticidad en la formacion de defectos en
soldadura por friccion-agitacion (FSW). Mediante la implementacion de una arquitectura jerarquica de
aprendizaje automatico, validada sobre un conjunto de datos experimentales heterogéneo, se derivan las
siguientes conclusiones:

1. Superioridad de las Arquitecturas Hibridas: Si bien los modelos base como Random Forest establecieron una
linea base solida (AUC = 0.92), la implementacion de estrategias de ensamblaje avanzado, especificamente el
Super-Ensemble y el Stacking con Meta-GB, demostro ser critica para la fiabilidad industrial. Estas
arquitecturas no solo maximizaron la precision global (86.36%), sino que optimizaron el equilibrio entre
sensibilidad y especificidad (F1-Score > 0.84), mitigando la varianza inherente a los modelos individuales y
proporcionando una robustez superior ante la incertidumbre del proceso.

2. Decodificacion de la Fenomenologia del Defecto: El analisis de importancia de caracteristicas (Gini
Importance) validé computacionalmente la teoria termomecanica subyacente. Se identificd que la velocidad
de rotacion y la velocidad de avance gobiernan mas del 70% de la varianza predictiva. Esto confirma que la
formacion de vacios es fundamentalmente un problema de insuficiencia en el aporte térmico y el flujo
plastico, cuantificable a través del indice de pseudo-calor (w?/v), lo que permite transitar de un control
empirico a uno basado en limites fisicos cuantificados.

3. Interpretabilidad como Eje de Valor: El estudio trasciende la aplicacion de modelos de “caja negra” al
demostrar una sinergia epistemologica entre la ciencia de datos y la ingenieria de materiales. La capacidad de
los modelos para jerarquizar variables fisicas proporciona a los ingenieros no solo una prediccion binaria, sino
una comprension causal de los mecanismos de fallo, cerrando la brecha entre la analitica prescriptiva y la
toma de decisiones en planta.

4. Habilitador Tecnoldgico para la Manufactura 4.0: Los resultados sientan las bases tedricas y algoritmicas para
el despliegue de Gemelos Digitales (Digital Twins) en procesos de union. La alta capacidad de discriminacion
(AUC > 0.93 en los mejores estimadores) viabiliza la integracion de estos algoritmos en sistemas ciber-fisicos
de bucle cerrado, capaces de ajustar adaptativamente los parametros de soldadura en tiempo real para
garantizar una produccion “cero defectos”.

Para capitalizar estos hallazgos, se propone una hoja de ruta de investigacion orientada a la fusion sensorial
en tiempo real. La integracion de sefnales de fuerza axial dinamica, par motor instantaneo y emisiones
acusticas enriqueceria el espacio de caracteristicas, permitiendo detectar inestabilidades transitorias
imperceptibles en los parametros estaticos. Asimismo, se sugiere la exploracion de arquitecturas de Deep
Learning secuencial (como LSTMs o Transformers) para modelar la dependencia temporal de la degradacion de
la herramienta y su impacto en la calidad de la union, avanzando hacia sistemas de manufactura
verdaderamente autoénomos y resilientes.
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