Degradación fotocatalítica de ibuprofeno utilizando catalizador de TiO2/SiO2 preparados por el método sol-gel

Autores/as

DOI:

https://doi.org/10.65093/aci.v16.n1.2025.24

Palabras clave:

contaminantes emergentes, nanomateriales, luz solar, procesos avanzados de oxidación

Resumen

Fue utilizado el nanomaterial TiO₂/SiO₂ como catalizador para la degradación de ibuprofeno un antiinflamatorio no esteroideo, mediante un proceso de fotocatálisis solar. El catalizador fue sintetizado por el método sol-gel y caracterizado por diferentes técnicas. El análisis de EDE confirmó una relación Ti:Si cercana a la teórica de 1:3, mientras que DRX evidenció la presencia de la fase anatasa de TiO₂ y la estructura amorfa de SiO₂. Las micrografías obtenidas por MEB mostraron la morfología superficial del catalizador, y el análisis de adsorción-desorción de N₂ reveló isotermas tipo IV, características de materiales mesoporosos. Las pruebas fotocatalíticas bajo 8 horas de irradiación solar demostraron una degradación de ibuprofeno del 80–85%. Los espectros UV-Vis evidenciaron una disminución en la absorbancia del anillo aromático a 220 nm y un incremento en la absorbancia del grupo ácido carboxílico a 280 nm durante las 4 horas de irradiación solar del primer día, evidenciando la formación de subproductos intermedios, los cuales se eliminaron al concluir el proceso fotocatalítico durante las 4 horas del segundo día. Además, la constante de velocidad aparente (k = 0.0295 min⁻¹) y la constante de adsorción (kads = 0.0797 L/mg) confirmaron la eficiencia del nanomaterial, favorecida por la fuerte interacción con el catalizador.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmed, Y., Dutta, K.R., Akhtar, P., Hossen, M.A., Alam, M.J., Alharbi, O.A., et al. (2025). Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts. Beilstein Journal of Nanotechnology, 16, 264–285. https://doi.org/10.3762/bjnano.16.21

Alawi, M.A., Alahmad, W.R. & Al-Fogha'a, B.T. (2017). Photocatalytic degradation of diclofenac and ibuprofen by SiO₂/TiO₂/(Ru, N) catalysts under sun light in solar bath-like system. Fresenius Environmental Bulletin, 26 (5), 3685–3691.

Bedolla, R. & García-Rivero, M. (2011). Immobilization of Aspergillus niger sp. in sol gel and its potential for production of xylanases. Journal of Sol-Gel Science and Technology, 57 (1), 6–11. https://doi.org/10.1007/s10971-010-2314-6

Bellardita, M., Addamo, M., Di Paola, A., Marcì, G., Palmisano, L., Cassar, L., et al. (2010). Photocatalytic activity of TiO2/SiO2 systems. Journal of Hazardous Materials, 174 (1–3), 707–713. https://doi.org/10.1016/j.jhazmat.2009.09.108

Chaker, H., Fourmentin, S., & Chérif-Aouali, L. (2020). Efficient Photocatalytic Degradation of Ibuprofen under Visible Light Irradiation Using Silver and Cerium Co-Doped Mesoporous TiO₂. ChemistrySelect, 5 (38), 11787–11796. https://doi.org/10.1002/slct.202002730

Gauthier, J. M., Downing, J. A., & Sappington, K. G. (2019). Effects of pharmaceuticals in the environment: Ecotoxicology and regulatory frameworks. Environmental Toxicology and Chemistry, 38 (4), 812-821. https://doi.org/10.1002/etc.4412

Gil, J.M., Soto, M.A., Usma, I.J. & Gutierrez, D.O. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción Más Limpia, 7 (22), 52–73. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-04552012000200005

Godawat, R., Ameta, R. & Kothari, S. (2016). A study on the effect of untreated and TiO2 treated Orange G solution on the growth and biochemical parameters of Allium cepa (onion). Department of Chemistry, PAHER University. Udaipur, India. https://www.tsijournals.com/articles/a-study-on-the-effect-of-untreated-and-tio2-treated-orange-g-solution-on-the-growth-and-biochemical-parameters-of-allium.pdf

Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., et al. (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98 (3), 256–264. https://doi.org/10.1016/j.aquatox.2010.02.013

Jiménez-Salcedo, M., Monge, M. & Tena, M.T. (2019). Photocatalytic degradation of ibuprofen in water using TiO2/UV and g-C3N4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere, 215, 605-618. https://doi.org/10.1016/j.chemosphere.2018.10.053

Kadiyala, N., & Kumar, P. (2025). Ionic liquid mediated sol gel method for fabrication of TiO₂–SiO₂ nanocomposites with enhanced photocatalytic activity. ACS Omega, 10 (1), 1234–1242. https://doi.org/10.1021/acsomega.4c07743

Kobayashi, M., Kuma, R., Masaki, S. & Sugishima, N. (2005). TiO2–SiO2 and V2O5/TiO2–SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 60 (3–4), 173–179. https://doi.org/10.1016/j.apcatb.2005.02.030

Kumar, A. & Pal, D. (2018). Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering, 6, 52–58. https://doi.org/10.1016/j.jece.2017.11.059

Kumar, A., Khan, M., Zeng, X., & Lo, I. M. C. (2018). Development of g-C₃N₄/TiO₂/Fe₃O₄@SiO₂ heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage. Journal of Hazardous Materials, 344, 1–12. https://doi.org/10.1016/j.jhazmat.2017.10.037

Laos Barrera, L.M. (2019). Reducción de la concentración de ibuprofeno en una muestra de agua sintética, mediante fotocatálisis heterogénea (Trabajo de suficiencia profesional). Universidad Nacional Tecnológica de Lima Sur. Recuperado de http://repositorio.untels.edu.pe/jspui/handle/123456789/211

Lin, L., Zhang, Y. & Wang, H. (2019). Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO₂ nanofibers combined with BN nanosheets. Science of the Total Environment, 650, 132–141. https://doi.org/10.1016/j.scitotenv.2018.09.157

Marbán, G., Fernández-Pérez, A. & Álvarez-García, S. (2023). Ultraviolet light spectroscopic characterization of ibuprofen acid aggregation in deionized water. Heliyon, 9 (11), e21260. https://doi.org/10.1016/j.heliyon.2023.e21260

Masuda, R., Takahashi, W. & Ishii, M. (1990). Particle size distribution of spherical silica gel produced by sol-gel method. Journal of Non-Crystalline Solids, 121 (1–3), 389–393. https://doi.org/10.1016/0022-3093(90)90163-G

Matoh, L., Žener, B., Kovačić, M., Kušić, H., Arčon, I., Levstek, M., et al. (2022). Photocatalytic sol-gel/P25 TiO₂ coatings for water treatment: Degradation of 7 selected pharmaceuticals. Ceramics International, 49 (14), 24395–24406. https://doi.org/10.1016/j.ceramint.2022.09.204

Méndez-Arriaga, F., Maldonado, M. I., Giménez, J., Esplugas, S. & Malato, S. (2009). Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catalysis Today, 144 (1–2), 112–116. https://doi.org/10.1016/j.cattod.2009.01.028

Merghes, P., Ilia, G., Maranescu, B., Varan, N. & Simulescu, V. (2024). The Sol–Gel Process, a green method used to obtain hybrid materials containing phosphorus and zirconium. Gels, 10 (10), 656. https://doi.org/10.3390/gels10100656

Migliore, L., Panzica, S., & Baldini, M. (2020). Bioaccumulation of pharmaceutical pollutants in aquatic organisms: Environmental risk assessment. Environmental Pollution, 264, 114720. https://doi.org/10.1016/j.envpol.2020.114720

Miranda, M.O., Cavalcanti, W.E.C., Barbosa, F.F., de Sousa, J.A., Silva, F.I., & Braga, T.P. (2021). Photocatalytic degradation of ibuprofen using titanium oxide: Insights into the mechanism and preferential attack of radicals. RSC Advances, 11(16), 9371–9380. https://doi.org/10.1039/D1RA04340D

Moreno Ortiz, V. C. (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmacéuticas, 44 (4), 17–29. https://www.scielo.org.mx/scielo.php?pid=S1870-01952013000400003&script=sci_abstract

Oliveira, M., Cabral, W.E., Fernandes, F., de Souza, J.A., da Silva, F.I., Pergher, S.B.C., et al. (2021). Photocatalytic degradation of ibuprofen using titanium oxide: Insights into the mechanism and preferential attack of radicals. RSC Advances, 11 (34), 20886–20897. https://doi.org/10.1039/D1RA04340D

Rashid, R., Shafiq, I., Gilani, M. R. H. S., Maaz, M., & Akhter, P. (2024). Advancements in TiO₂-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. Chemosphere, 349, 140703. https://doi.org/10.1016/j.chemosphere.2023.140703

Ruggeri, G., Ghigo, G., Maurino, V., Minero, C. & Vione, D. (2013). Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. Water Research, 47 (16), 6109–6121. https://doi.org/10.1016/j.watres.2013.07.031

Sá, A.S., Feitosa, R.P., Honório, L., Peña-Garcia, R., Almeida, L.C., Dias, J.S., et al. (2021). A brief photocatalytic study of ZnO containing cerium towards ibuprofen degradation. Materials, 14(19), 5891. https://doi.org/10.3390/ma14195891

Salcedo, M. J. (2021). Photocatalytic degradation of pharmaceuticals in water: Design of nanocatalysts and study of by-products and mechanism [Tesis de máster, Universidad de La Rioja]. Repositorio Institucional de la Universidad de La Rioja. https://investigacion.unirioja.es/documentos/6184c37d2b9f274a4b5b097d

Schaper, J.L., Posselt, M., McCallum, J.L., Banks, E.W., Hoehne, A., Meinikmann, K., et al. (2018). Hyporheic exchange controls fate of trace organic compounds in an urban stream. Environmental Science & Technology, 52 (20), 12285–12294. https://doi.org/10.1021/acs.est.8b03117

Trianda, Y., Adityosulindro, S. & Moersidik, S. S. (2024). Ibuprofen as an emerging contaminant of concern: Occurrence in Southeast Asia water environment. E3S Web of Conferences, 530, 02007. https://doi.org/10.1051/e3sconf/202453002007

Utomo, R.S.B. & Hidayat, T. (2024). TiO₂/SiO₂ nanocomposite via a novel sol-gel method. Materials Science in Semiconductor Processing, 145, 106556.

Wang, P., Bu, L., Wu, Y., Ma, W., Zhu, S. & Zhou, S. (2021). Mechanistic insight into the degradation of ibuprofen in UV/H2O2 process via a combined experimental and DFT study. Chemosphere, 267, 128883. https://doi.org/10.1016/j.chemosphere.2020.128883

Descargas

Publicado

31-03-2025

Cómo citar

Pérez-Osorio, G., Pozos-Escamilla, C. A., & Santamaría-Juárez, J. D. (2025). Degradación fotocatalítica de ibuprofeno utilizando catalizador de TiO2/SiO2 preparados por el método sol-gel. Avances En Ciencia E Ingeniería, 16(1), 67–79. https://doi.org/10.65093/aci.v16.n1.2025.24