Efecto de microondas en minerales preg-robbing: revisión sistemática PRISMA-2020, desafíos y oportunidades
DOI:
https://doi.org/10.65093/aci.v16.n1.2025.25Palabras clave:
procesamiento por microondas, preg-robbing, menas auríferas doblemente refractarias, propiedades dieléctricaResumen
Esta revisión sistemática PRISMA-2020 evalúa la irradiación de microondas como pretratamiento para minerales carbonosos preg-robbing y minerales de oro doblemente refractarios. La búsqueda abarcó el período 2000–2025 (publicaciones Scopus y WoS) con filtro en los cuartiles Q1/Q2 (SJR/JCR), que produjeron tres estudios elegibles después de la deduplicación y la revisión de texto completo. La evidencia cuantitativa muestra que el pretratamiento de microondas, en particular la tostación indirecta con susceptores, elimina hasta el 94% del carbono orgánico, suprime el preg-robbing y permite recuperaciones de oro superiores al 98%. Un metaanálisis de efectos aleatorios (Hedges g) indica un gran efecto combinado (g = 2,26; IC del 95%: 0,66–3,85; I2 = 0%). Mecanísticamente, el acoplamiento selectivo produce gradientes térmicos internos, microfisuras y oxidación/pasivación de la materia carbonosa, la eficiencia se rige por la permitividad compleja y la tangente de pérdidas, que presentan máximos dependientes de la temperatura. Persisten lagunas metodológicas —falta de replicación, trazabilidad energética limitada y ausencia de un índice estandarizado de preg-robbing— que dificultan la generalización y el escalamiento. Se proponen directrices de diseño y prioridades de investigación que integran la caracterización dieléctrica, el control de la microestructura y protocolos de lixiviación estandarizados para traducir el rendimiento de laboratorio en una práctica industrial fiable.
Descargas
Citas
Abdollahi, H., Karimi, P., Amini, A. & Akcil, A. (2015). Direct cyanidation and roasting combination of a semi-refractory massive sulfide ore. Minerals & Metallurgical Processing, 32 (3), 161–169. https://doi.org/10.1007/BF03402284
Cao, P., Zhang, S. & Zheng, Y. (2022). Characterization and gold extraction of gold-bearing dust from carbon-bearing gold concentrates. Mineral Processing and Extractive Metallurgy Review, 43 (2), 188–200. https://doi.org/10.1080/08827508.2020.1854248
Chen, T., Cabri, L. & Dutrizac, J. (2002). Characterizing gold in refractory sulfide gold ores and residues. JOM-journal of the Minerals Metals & Materials Society, 54 (12), 20–22. https://doi.org/10.1007/BF02709181
Chen, T. & Dutrizac, J. (2008). Mineralogical overview of the behavior of gold in conventional copper electrorefinery anode slimes processing circuits. Minerals & Metallurgical Processing, 25 (3), 156–164. https://doi.org/10.1007/BF03403402
Dehghani, A., Ostad-rahimi, M., Mojtahedzadeh, S. & Gharibi, K. (2009). Recovery of gold from the mouteh gold mine tailings dam. Journal of the South African Institute of Mining and Metallurgy, 109 (7), 417–421. https://scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532009000700004
Díaz, C., Conard, B., Oneill, C. & Dalvi, A. (1994). Inco roast-reduction smelting of nickel concentrate. CIM Bulletin, 87 (981), 62–71.
Ding, J., Han, P., Lü, C., Qian, P., Ye, S. & Chen, Y. (2017). Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process. International Journal of Minerals Metallurgy and Materials, 24 (11), 1241–1250. https://doi.org/10.1007/s12613-017-1516-0
Fernández, R. (2003). Better temperature control of newmont’s roasters increased gold recovery. Minerals & Metallurgical Processing, 20 (4), 191–196. https://doi.org/10.1007/BF03403175
Fernández, R., Collins, A. & Marczak, E. (2010). Gold recovery from high-arsenic-containing ores at newmont’s roasters. Minerals & Metallurgical Processing, 27 (2), 60–64. https://doi.org/10.1007/BF03402380
Fleming, C. (1998). Thirty years of turbulent change in the gold industry. CIM Bulletin, 91 (1025), 55–67.
Fleming, C. (2010). Basic iron sulfate - a potential killer in the processing of refractory gold concentrates by pressure oxidation. Minerals & Metallurgical Processing, 27 (2), 81–88. https://doi.org/10.1007/BF03402383
Gao, P., Qin, Y., Han, Y., Li, Y. & Liu, S. (2021). Strengthening leaching effect of carlin-type gold via high-voltage pulsed discharge pretreatment. International Journal of Minerals Metallurgy and Materials, 28 (6), 965–973. https://doi.org/10.1007/s12613-020-2012-5
Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., et al. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. https://doi.org/10.1016/j.autcon.2022.104532
Haque, K. (1992). The role of oxygen in cyanide leaching of gold ore. CIM BULLETIN, 85 (963), 31–38.
Hou, L.-C., Li, Q., Hu, J.-J., Yang, Y-b, Xu, B & Jiang, T. (2015). Volatilization behavior and mechanisms of arsenic, sulfur and carbon in the refractory gold concentrate. TMS Annual Meeting, 2015- March (nan), 163–170. https://doi.org/10.1007/978-3-319-48217-0_21
Konadu, K.T., Mendoza, D.M., Huddy, R.J., Harrison, S.T.L., Kaneta, T. & Sasaki, K. (2020). Biological pretreatment of carbonaceous matter in double refractory gold ores: A review and some future considerations. Hydrometallurgy, 196(nan):105434.0. https://doi.org/10.1016/j.hydromet.2020.105434
León, F., Rojas, L., Bazán, V., Martínez, Y., Peña, A. & Garcia, J. (2025). A systematic review of copper heap leaching: Key operational variables, green reagents, and sustainable engineering strategies. Processes, 13 (5), 1513. https://doi.org/10.3390/pr13051513
Li, J., Sun, C., Kou, J., Wang, P. & Liu, X. (2025). Development of a gold leaching reagent as an alternative to cyanide: Synthesis and performance evaluation. International Journal of Minerals Metallurgy and Materials, 32 (4), 835–850. https://doi.org/10.1007/s12613-024-2957-x
Li, Q., Ji, F., Xu, B., Hu, J., Yang, Y. & Jiang, T. (2017). Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting. International Journal of Minerals Metallurgy and Materials, 24 (4), 386–392. https://doi.org/10.1007/s12613-017-1418-1
Liu, Y., Li, K., Yin, Z., Dong, J., Xu, L., Ma, R., et al. (2024). Pretreatment of refractory gold ore by curing with concentrated sulfuric acid. Mining Metallurgy & Exploration, 41 (2), 1079–1087. https://doi.org/10.1007/s42461-024-00930-6
Mutimutema, P., Akdogan, G. & Tadie, M. (2022). Evaluation of pre-treatment methods for gold recovery from refractory calcine tailings. Journal of the Southern African Institute of Mining and Metallurgy, 122 (10), 561–570. https://doi.org/10.17159/2411-9717/2070/2022
Nanthakumar, B., Pickles, C.A. & Kelebek, S. (2007). Microwave pretreatment of a double refractory gold ore. Minerals Engineering, 20(11), 1109–1119. https://doi.org/10.1016/j.mineng.2007.04.003
Nyavor, K. & Egiebor, N. (1992). Application of pressure oxidation pre- treatment to a double-refractory gold concentrate. CIM Bulletin, 85 (956), 84–96.
Qin, H., Guo, X., Tian, Q. & Zhang, L. (2021). Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system. International Journal of Minerals Metallurgy and Materials, 28 (6), 956–964. https://doi.org/10.1007/s12613-020-2142-9
Rojas, L., Peña, A. & Garcia, J. (2025). Complex dynamics and intelligent control: Advances, challenges, and applications in mining and industrial processes. Mathematics, 13 (6), 961. https://doi.org/10.3390/math13060961
Sánchez-Garrido, A.J., Navarro, I.J., García, J. & Yepes, V. (2023). A systematic literature review on modern methods of construction in building: An integrated approach using machine learning. Journal of Building Engineering, 73:106725. https://doi.org/10.1016/j.jobe.2023.106725
Yogurtcuoglu, E. & Alp, I. (2023). The effect of roasting on the mineralogical structure and cyanidation performance of gossan type oxidized refractory gold-silver ores. Mining Metallurgy & Exploration, 40 (5):1667–1679. https://doi.org/10.1007/s42461-023-00832-z
Zhang, J., Zhang, Y., Richmond, W. & Wang, H. (2010). Processing technologies for gold-telluride ores. International Journal of Minerals Metallurgy and Materials, 17 (1), 1–10. https://doi.org/10.1007/s12613-010-0101-6
Zhang, S., Zheng, Y., Cao, P., Li, C., Lai, S. & Wang, X. (2018). Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates. International Journal of Minerals Metallurgy and Materials, 25 (10), 1132–1139. https://doi.org/10.1007/s12613-018-1664-x
Zholdasbay, E., Argyn, A., Kurmanseitov, M., Dosmukhamedova, K. & Daruesh, G. (2025). Study of the influence of temperature and duration of chlorinating roasting on the extraction of gold from e-waste. Kompleksnoe Ispolzovanie Mineralnogo Syra, 333 (2), 51–58. https://doi.org/10.31643/2025/6445.17
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.






