Efecto de microondas en minerales preg-robbing: revisión sistemática PRISMA-2020, desafíos y oportunidades

Autores/as

DOI:

https://doi.org/10.65093/aci.v16.n1.2025.25

Palabras clave:

procesamiento por microondas, preg-robbing, menas auríferas doblemente refractarias, propiedades dieléctrica

Resumen

Esta revisión sistemática PRISMA-2020 evalúa la irradiación de microondas como pretratamiento para minerales carbonosos preg-robbing y minerales de oro doblemente refractarios. La búsqueda abarcó el período 2000–2025 (publicaciones Scopus y WoS) con filtro en los cuartiles Q1/Q2 (SJR/JCR), que produjeron tres estudios elegibles después de la deduplicación y la revisión de texto completo. La evidencia cuantitativa muestra que el pretratamiento de microondas, en particular la tostación indirecta con susceptores, elimina hasta el 94% del carbono orgánico, suprime el preg-robbing y permite recuperaciones de oro superiores al 98%. Un metaanálisis de efectos aleatorios (Hedges g) indica un gran efecto combinado (g = 2,26; IC del 95%: 0,66–3,85; I2 = 0%). Mecanísticamente, el acoplamiento selectivo produce gradientes térmicos internos, microfisuras y oxidación/pasivación de la materia carbonosa, la eficiencia se rige por la permitividad compleja y la tangente de pérdidas, que presentan máximos dependientes de la temperatura. Persisten lagunas metodológicas —falta de replicación, trazabilidad energética limitada y ausencia de un índice estandarizado de preg-robbing— que dificultan la generalización y el escalamiento. Se proponen directrices de diseño y prioridades de investigación que integran la caracterización dieléctrica, el control de la microestructura y protocolos de lixiviación estandarizados para traducir el rendimiento de laboratorio en una práctica industrial fiable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdollahi, H., Karimi, P., Amini, A. & Akcil, A. (2015). Direct cyanidation and roasting combination of a semi-refractory massive sulfide ore. Minerals & Metallurgical Processing, 32 (3), 161–169. https://doi.org/10.1007/BF03402284

Cao, P., Zhang, S. & Zheng, Y. (2022). Characterization and gold extraction of gold-bearing dust from carbon-bearing gold concentrates. Mineral Processing and Extractive Metallurgy Review, 43 (2), 188–200. https://doi.org/10.1080/08827508.2020.1854248

Chen, T., Cabri, L. & Dutrizac, J. (2002). Characterizing gold in refractory sulfide gold ores and residues. JOM-journal of the Minerals Metals & Materials Society, 54 (12), 20–22. https://doi.org/10.1007/BF02709181

Chen, T. & Dutrizac, J. (2008). Mineralogical overview of the behavior of gold in conventional copper electrorefinery anode slimes processing circuits. Minerals & Metallurgical Processing, 25 (3), 156–164. https://doi.org/10.1007/BF03403402

Dehghani, A., Ostad-rahimi, M., Mojtahedzadeh, S. & Gharibi, K. (2009). Recovery of gold from the mouteh gold mine tailings dam. Journal of the South African Institute of Mining and Metallurgy, 109 (7), 417–421. https://scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532009000700004

Díaz, C., Conard, B., Oneill, C. & Dalvi, A. (1994). Inco roast-reduction smelting of nickel concentrate. CIM Bulletin, 87 (981), 62–71.

Ding, J., Han, P., Lü, C., Qian, P., Ye, S. & Chen, Y. (2017). Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process. International Journal of Minerals Metallurgy and Materials, 24 (11), 1241–1250. https://doi.org/10.1007/s12613-017-1516-0

Fernández, R. (2003). Better temperature control of newmont’s roasters increased gold recovery. Minerals & Metallurgical Processing, 20 (4), 191–196. https://doi.org/10.1007/BF03403175

Fernández, R., Collins, A. & Marczak, E. (2010). Gold recovery from high-arsenic-containing ores at newmont’s roasters. Minerals & Metallurgical Processing, 27 (2), 60–64. https://doi.org/10.1007/BF03402380

Fleming, C. (1998). Thirty years of turbulent change in the gold industry. CIM Bulletin, 91 (1025), 55–67.

Fleming, C. (2010). Basic iron sulfate - a potential killer in the processing of refractory gold concentrates by pressure oxidation. Minerals & Metallurgical Processing, 27 (2), 81–88. https://doi.org/10.1007/BF03402383

Gao, P., Qin, Y., Han, Y., Li, Y. & Liu, S. (2021). Strengthening leaching effect of carlin-type gold via high-voltage pulsed discharge pretreatment. International Journal of Minerals Metallurgy and Materials, 28 (6), 965–973. https://doi.org/10.1007/s12613-020-2012-5

Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., et al. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. https://doi.org/10.1016/j.autcon.2022.104532

Haque, K. (1992). The role of oxygen in cyanide leaching of gold ore. CIM BULLETIN, 85 (963), 31–38.

Hou, L.-C., Li, Q., Hu, J.-J., Yang, Y-b, Xu, B & Jiang, T. (2015). Volatilization behavior and mechanisms of arsenic, sulfur and carbon in the refractory gold concentrate. TMS Annual Meeting, 2015- March (nan), 163–170. https://doi.org/10.1007/978-3-319-48217-0_21

Konadu, K.T., Mendoza, D.M., Huddy, R.J., Harrison, S.T.L., Kaneta, T. & Sasaki, K. (2020). Biological pretreatment of carbonaceous matter in double refractory gold ores: A review and some future considerations. Hydrometallurgy, 196(nan):105434.0. https://doi.org/10.1016/j.hydromet.2020.105434

León, F., Rojas, L., Bazán, V., Martínez, Y., Peña, A. & Garcia, J. (2025). A systematic review of copper heap leaching: Key operational variables, green reagents, and sustainable engineering strategies. Processes, 13 (5), 1513. https://doi.org/10.3390/pr13051513

Li, J., Sun, C., Kou, J., Wang, P. & Liu, X. (2025). Development of a gold leaching reagent as an alternative to cyanide: Synthesis and performance evaluation. International Journal of Minerals Metallurgy and Materials, 32 (4), 835–850. https://doi.org/10.1007/s12613-024-2957-x

Li, Q., Ji, F., Xu, B., Hu, J., Yang, Y. & Jiang, T. (2017). Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting. International Journal of Minerals Metallurgy and Materials, 24 (4), 386–392. https://doi.org/10.1007/s12613-017-1418-1

Liu, Y., Li, K., Yin, Z., Dong, J., Xu, L., Ma, R., et al. (2024). Pretreatment of refractory gold ore by curing with concentrated sulfuric acid. Mining Metallurgy & Exploration, 41 (2), 1079–1087. https://doi.org/10.1007/s42461-024-00930-6

Mutimutema, P., Akdogan, G. & Tadie, M. (2022). Evaluation of pre-treatment methods for gold recovery from refractory calcine tailings. Journal of the Southern African Institute of Mining and Metallurgy, 122 (10), 561–570. https://doi.org/10.17159/2411-9717/2070/2022

Nanthakumar, B., Pickles, C.A. & Kelebek, S. (2007). Microwave pretreatment of a double refractory gold ore. Minerals Engineering, 20(11), 1109–1119. https://doi.org/10.1016/j.mineng.2007.04.003

Nyavor, K. & Egiebor, N. (1992). Application of pressure oxidation pre- treatment to a double-refractory gold concentrate. CIM Bulletin, 85 (956), 84–96.

Qin, H., Guo, X., Tian, Q. & Zhang, L. (2021). Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system. International Journal of Minerals Metallurgy and Materials, 28 (6), 956–964. https://doi.org/10.1007/s12613-020-2142-9

Rojas, L., Peña, A. & Garcia, J. (2025). Complex dynamics and intelligent control: Advances, challenges, and applications in mining and industrial processes. Mathematics, 13 (6), 961. https://doi.org/10.3390/math13060961

Sánchez-Garrido, A.J., Navarro, I.J., García, J. & Yepes, V. (2023). A systematic literature review on modern methods of construction in building: An integrated approach using machine learning. Journal of Building Engineering, 73:106725. https://doi.org/10.1016/j.jobe.2023.106725

Yogurtcuoglu, E. & Alp, I. (2023). The effect of roasting on the mineralogical structure and cyanidation performance of gossan type oxidized refractory gold-silver ores. Mining Metallurgy & Exploration, 40 (5):1667–1679. https://doi.org/10.1007/s42461-023-00832-z

Zhang, J., Zhang, Y., Richmond, W. & Wang, H. (2010). Processing technologies for gold-telluride ores. International Journal of Minerals Metallurgy and Materials, 17 (1), 1–10. https://doi.org/10.1007/s12613-010-0101-6

Zhang, S., Zheng, Y., Cao, P., Li, C., Lai, S. & Wang, X. (2018). Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates. International Journal of Minerals Metallurgy and Materials, 25 (10), 1132–1139. https://doi.org/10.1007/s12613-018-1664-x

Zholdasbay, E., Argyn, A., Kurmanseitov, M., Dosmukhamedova, K. & Daruesh, G. (2025). Study of the influence of temperature and duration of chlorinating roasting on the extraction of gold from e-waste. Kompleksnoe Ispolzovanie Mineralnogo Syra, 333 (2), 51–58. https://doi.org/10.31643/2025/6445.17

Descargas

Publicado

31-03-2025

Cómo citar

Bazan, V., & Rojas-Valdivia, L. (2025). Efecto de microondas en minerales preg-robbing: revisión sistemática PRISMA-2020, desafíos y oportunidades. Avances En Ciencia E Ingeniería, 16(1), 81–98. https://doi.org/10.65093/aci.v16.n1.2025.25