Remoción de ácido 2,4-diclorofenoxiacético en solución acuosa mediante biomateriales a base de quitosano y residuos de naranja
DOI:
https://doi.org/10.65093/aci.v16.n2.2025.26Palabras clave:
adsorción, herbicida, biopolímero, cáscara de cítricosResumen
Entre los contaminantes más comunes en suelos y cuerpos de agua se encuentran los derivados de actividades agrícolas. El ácido 2,4-diclorofenoxiacético (2,4-D) es un compuesto perteneciente al grupo de los fenoxis y se utiliza ampliamente como herbicida selectivo. Debido a su naturaleza ionizable, puede migrar fácilmente hacia los cuerpos de agua, representando un riesgo ambiental. Una alternativa viable y económica para su remoción es la adsorción mediante biomateriales, que combinan propiedades fisicoquímicas de sus componentes para obtener características estructurales y funcionales mejoradas. En este estudio, se sintetizaron biomateriales basados en quitosano y cáscara de naranja mediante reticulación iónica. Los experimentos de adsorción de 2,4-D se realizaron a valores de pH de 3 y 5, a 25 °C y se obtuvo una capacidad máxima de adsorción de 8.3 mg g-1 a pH 3. Los biomateriales se caracterizaron mediante diversas técnicas para analizar sus propiedades estructurales y los posibles mecanismos de interacción.
Descargas
Citas
Amiri, M.J., Roohi, R., Arshadi, M. & Abbaspourrad, A. (2020). 2,4-D adsorption from agricultural subsurface drainage by canola stalk-derived activated carbon: insight into the adsorption kinetics models under batch and column conditions. Environmental Science and Pollution Research, 27 (14), 16983–16997. https://doi.org/10.1007/s11356-020-08211-7
Arcibar-Orozco, J.A., Flores-Rojas, AI., Rangel-Mendez, J.R. & Díaz-Flores, P.E. (2020). Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution. Environmental Technology (United Kingdom), 41 (12), 1554–1567. https://doi.org/10.1080/09593330.2018.1542033
Balasubramanian, M. (2014). Composite Materials and Processing. CR Press.
Binh, Q.A. & Nguyen, H.H. (2020). Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar. Bioresource Technology Reports, 11. https://doi.org/ 10.1016/j.biteb.2020.100520
Bradu, C., Magureanu, M. & Parvulescu, V.I. (2017). Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system. Journal of Hazardous Materials, 336, 52–56. https://doi.org/10.1016/ j.jhazmat.2017.04.050
Chen, S.F., Chen, W.J., Song, H., Liu, M., Mishra, S., Ghorab, M.A. et al. (2024). Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules, 29 (16). https://doi.org/10.3390/ molecules29163869
da Rosa Schio, R., da Rosa, B.C., Gonçalves, J.O., Pinto, L.A.A., Mallmann, E.S. & Dotto, G.L. (2019). Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye. International Journal of Biological Macromolecules, 121, 373–380. https://doi.org/10.1016/j.ijbiomac. 2018.09.186
da Silva Alves, D.C., Healy, B., Pinto, L.A. de A., Cadaval, T.R. S. & Breslin, C.B. (2021). Recent developments in Chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules, 26 (3). https://doi.org/10.3390/molecules26030594
de Pinho Neves, A.L., Milioli, C.C., Müller, L., Riella, H.G., Kuhnen, N.C. & Stulzer, H.K. (2014). Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 34–39. https://doi.org/https://doi.org/10.1016/j.colsurfa. 2013.12.058
de Souza, F.M., dos Santos, O.A.A. & Vieira, M.G.A. (2019). Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environmental Science and Pollution Research, 26 (18), 18329–18342. https://doi.org/10.1007/s11356-019-05196-w
Espinosa-Martínez, I.A., Medellín-Castillo, N.A., Flores-Rojas, A.I., Cisneros-Ontiveros, H.G., Díaz-Flores, P.E., Chaparro-Garnica, C.Y. et al. (2024). Synthesis and application of chitosan and orange peel biocomposites for cadmium (II) removal from water. MRS Advances, 9 (22), 1720–1727. https://doi.org/10.1557/s43580-024-00987-x
Fiorenza, R., Di Mauro, A., Cantarella, M., Privitera, V. & Impellizzeri, G. (2019). Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO 2. Journal of Photochemistry and Photobiology A: Chemistry, 380. https://doi.org/10.1016/j.jphotochem.2019.111872
Flores-Rojas, A I., Díaz-Flores, P.E., Medellín-Castillo, N.A., Labrada-Delgado, G.J., Berber-Mendoza, M.S. & Cisneros-Ontiveros, H.G. (2024). Biocomposites based on chitosan and orange peel as a green material alternative for the removal of nitrate in water. MRS Advances, 9 (22), 1699–1705. https://doi.org/10.1557/s43580-024-00958-2
Flores-Rojas, A.I., Díaz-Flores, P.E., Medellín-Castillo, N.A., Ovando-Medina, V.M. & Rodríguez-Ortiz, J.C. (2020). Biomaterials based on chitosan/orange peel as a controlled release matrix for KNO3: synthesis, characterization and their performance evaluation. Iranian Polymer Journal (English Edition), 29 (11), 1007–1017. https://doi.org/10.1007/s13726-020-00858-w
García-Arriaga, Y.J., Flores-Rojas, A.I., Cisneros-Ontiveros, H.G., Medellín-Castillo, N.A., Cruz-Briano, S.A., Díaz-Flores, P.E. et al. (2023). Water hyacinth: Valorization of its biomass through composites for the removal of Cd(II) in water. MRS Advances. https://doi.org/10.1557/s43580-023-00684-1
Ge, H. & Wang, S. (2014). Thermal preparation of chitosan-acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydrate Polymers, 113, 296–303. https://doi.org/10.1016/j.carbpol.2014.06.078
Guerrero-Estévez, S.M. & López-López, E. (2016). Effects of endocrine disruptors on reproduction in viviparous teleosts with intraluminal gestation. Reviews in Fish Biology and Fisheries, 26 (3), 563–587. https://doi.org/10.1007/s11160-016-9443-0
Hashad, R.A., Ishak, R.A.H., Fahmy, S., Mansour, S. & Geneidi, A.S. (2016). Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International Journal of Biological Macromolecules, 86, 50–58. https://doi.org/10.1016/ j.ijbiomac.2016.01.042
Isaeva, V.I., Vedenyapina, M.D., Kulaishin, S.A., Lobova, A.A., Chernyshev, V.V., Kapustin, G.I. et al. (2019). Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Transactions, 48 (40), 15091–15104. https://doi.org/10.1039/c9dt03037a
Islam, F., Wang, J., Farooq, M.A., Khan, M.S.S., Xu, L., Zhu, J. et al. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International, 111, 332–351. https://doi.org/https://doi.org/10.1016/j.envint.2017.10.020
Jaafarzadeh, N., Ghanbari, F. & Ahmadi, M. (2017). Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination. Chemosphere, 169, 568–576. https://doi.org/10.1016/j.chemosphere.2016.11.038
Kırbıyık, C., Pütün, A.E. & Pütün, E. (2017). Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-Dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation. Surfaces and Interfaces, 8, 182-192. https://doi.org/10.1016/j.surfin.2017.03.011
Kuśmierek, K., Szala, M. & Światkowski, A. (2016). Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. Journal of the Taiwan Institute of Chemical Engineers, 63, 371–378. https://doi.org/10.1016/j.jtice.2016.03.036
Nunes, A.R., Araújo, K.R.O. & Moura, A.O. (2019). From Water Using Chitosan. Research on Chemical Intermediates, 45, 315–332. https://doi.org/10.1007/s11164-018-3604-9
OMS (2022). Fourth edition incorporating the first and second addenda Guidelines for drinking-water quality. https://www.who.int/publications/i/item/9789240045064
Otalvaro, J.O., Avena, M. & Brigante, M. (2019). Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability. Journal of Environmental Chemical Engineering, 7 (5), 103325. https://doi.org/10.1016/j.jece.2019.103325
Salman, J.M., & Al-Saad, K. A. (2012). Adsorption of 2, 4-dichlorophenoxyacetic acid onto date seeds activated carbon: Equilibrium, kinetic and thermodynamic studies. International Journal of Chemical Sciences, 10 (2), 677–690. https://www.tsijournals.com/journals/archive/tsijcs-volume-10-issue-2-year-2012.html
Salomón, Y.L.D.O., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L. et al. (2021). High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). Journal of Environmental Chemical Engineering, 9 (1). https://doi.org/10.1016/j.jece.2020.104911
Shenvi, S., Ismail, A.F. & Isloor, A.M. (2014). Preparation and characterization study of PPEES/chitosan composite membrane crosslinked with tripolyphosphate. Desalination, 344, 90–96. https://doi.org/10.1016/ j.desal.2014.02.026
Trivedi, N.S., Kharkar, R.A. & Mandavgane S.A. (2016). Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid. Resource-Efficient Technologies, 2, S39–S46. https://doi.org/10.1016/j.reffit. 2016.11.001
Trivedi, N.S., Kharkar, R.A. & Mandavgane, S.A. (2019). 2,4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: Effect of preparation conditions on equilibrium adsorption capacity. Arabian Journal of Chemistry, 12 (8), 4541–4549. https://doi.org/10.1016/j.arabjc.2016.07.022
Vieira, T., Becegato, V.A. & Paulino, A.T. (2021). Equilibrium Isotherms, Kinetics, and Thermodynamics of the Adsorption of 2,4-Dichlorophenoxyacetic Acid to Chitosan-Based Hydrogels. Water, Air, and Soil Pollution, 232 (2). https://doi.org/10.1007/s11270-021-05021-6
Viswanathan, N. & Meenakshi, S. (2010). Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials, 178 (1–3), 226–232. https://doi.org/10.1016/j.jhazmat.2010.01.067
Wu, G., Ma, J., Li, S., Wang, S., Jiang, B., Luo, S. et al. (2020). Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. Environmental Research, 186 (April), 109542. https://doi.org/10.1016/j.envres.2020.109542
Zhang, B., Yuan, S., Sun, D., Li, Y. & Wu, T. (2018). Experimental and theoretical calculation investigation of 2,4-dichlorophenoxyacetic acid adsorption onto core-shell carbon microspheres@layered double hydroxide composites. RSC Advances, 8 (2), 856–866. https://doi.org/10.1039/c7ra11138j
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.






