Predicción de Defectos de Vacío en Soldadura por Fricción-Agitación mediante Algoritmos de Aprendizaje Automático

Autores/as

DOI:

https://doi.org/10.65093/aci.v16.n3.2025.36

Palabras clave:

soldadura por fricción-agitación (FSW), defectos volumétricos, aprendizaje de ensamble híbrido, modelado termomecánico

Resumen

Este estudio propone un marco predictivo avanzado basado en arquitecturas de aprendizaje automático híbrido para modelar la relación no lineal entre los parámetros termomecánicos y la probabilidad de fallo. Mediante el análisis riguroso de datos experimentales heterogéneos, se evaluaron y optimizaron modelos de ensamble de última generación, incluyendo Stacking, Weighted Voting y un Super-Ensemble. Los resultados validan la superioridad de las arquitecturas híbridas, alcanzando una precisión de clasificación de 86.4% y un Área Bajo la Curva ROC (AUC) de 0.93, superando a los estimadores base convencionales. El análisis de importancia de características mediante disminución de impureza de Gini corroboró la fenomenología física del proceso, identificando la velocidad de rotación y de avance como los factores gobernantes del flujo plástico (71% de varianza explicada). Este trabajo no solo demuestra la viabilidad de la detección de defectos in-silico, sino que establece las bases algorítmicas para el desarrollo de Gemelos Digitales y sistemas de control adaptativo en el contexto de la Industria 4.0.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Avcı, A., Kocakulak, M., Acır, N., Gunes, E. & Canyurt, O.E. (2024). A study on the monitoring of weld quality using xgboost with particle swarm optimization. Ain Shams Engineering Journal, 15 (4), 102486. https://doi.org/10.1016/j.asej.2024.102651

Baruah, A. (2023). Void formation process data in welding. https://www.kaggle.com/datasets/arindambaruah/ void-formation-process-data-in-welding

Baruah, A., Nath, T. & Gope, J. (2023). Optimised machine learning classification model to detect void forma-tions in friction stir welding. Materials Today: Proceedings, 80, 3648–3653. https://doi.org/10.1016/j.matpr.2023.03.386

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324

Chen, C., Wang, W., Li, Y. & Song, D. (2024). Machine learning-based characterization of friction stir welding process: A review. Journal of Adhesion Science and Technology, pages 1–26. https://doi.org/10.1080/01694243.2024.2345163

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. https://doi.org/10.1145/2939672.2939785

Chuenmee, N., Jite-Aree, T. & Phannachitta, P. (2025). Machine learning for predicting resistance spot weld quality using process parameters. Journal of Industrial Information Integration, 37, 100559. https://doi.org/10.1016/j.rineng.2024.103570

Du, Y., Li, W., Wei, Y. & Li, J. (2019). Conditions for void formation in friction stir welding from machine learning. npj Computational Materials, 5 (1), 73. https://doi.org/10.1038/s41524-019-0207-y

Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29 (5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Jayashree, P.K., Gowda, B.R., Kumar, A., and S, S. (2018). Optimization of tig welding parameters for 6061al alloy using Taguchi´s based design of experiments. Materials Today: Proceedings, 5(5, Part 2):13449–13455. https://doi.org/10.1016/j.matpr.2018.10.154

León, F., Rojas, L., Gonzalez, C., Hernández, B. & García, J. (2024). Convergence frontier analysis of sparse-matrix quasi-newton methods: Applications to rock blasting geomechanics. Avances en Ciencia e Ingeniería, 15 (2), 51–63. https://doi.org/10.65093/aci.v15.n2.2024.13

Martínez, Y., Rojas, L., Peña, A., Valenzuela, M., Hernández, B. & García, J. (2024). Fractional pinns: New frontiers for long-range memory in continuum models. Avances en Ciencia e Ingeniería, 15 (3), 93–110. https://doi.org/10.65093/aci.v15.n3.2024.10

Mishra, R.S. & Ma, Z.Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50 (1-2), 1–78. https://doi.org/10.1016/j.mser.2005.07.001

Myśliwiec, P., Węglowski, M.S. & Dymek, S. (2024). Optimization of 2024-t3 aluminum alloy friction stir welding parameters using machine learning models. Materials, 17 (8),1866. https://doi.org/10.3390/ma17071452

Nandan, R., DebRoy, T. & Bhadeshia, H.K.D.H. (2008). Recent advances in friction-stir welding – process, weldment structure and properties. Progress in Materials Science, 53 (6), 980–1023. https://doi.org/10.1016/j.pmatsci.2008.05.001

Rajakumar, S., Muralidharan, C. & Balasubramanian, V. (2011). Optimisation and sensitivity analysis of friction stir welding process and tool parameters for joining aa1100 aluminium alloy. International Journal of Materials and Product Technology, 40 (1/2), 153–173. https://doi.org/10.1504/IJMMP.2011.040442

Rojas, L., Hernández, B. & García, J. (2025). A systematic review of intelligent agents, language models, and recurrent neural networks in industrial maintenance: Driving value creation for the mining sector. International Journal of Intelligent Systems, 2025(1):Article 9953223. Open access review article. ttps://doi.org/10.1155/int/9953223

Rojas, L., León, F., Bazan, V. & Hernández, B. (2024). Aproximaciones basadas en distancias ergódicas y mezclado caótico en pilas de lixiviación: Ergodic distances and chaotic mixing approaches for heap leaching systems. Avances en Ciencia e Ingeniería, 15 (2), 37–50. https://doi.org/10.65093/aci.v15.n2.2024.12

Schmidt, H.B., Hattel, J.H. & Wert, J. (2006). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 14 (2), 143–157. https://doi.org/10.1088/0965-0393/12/1/013

Shi, L. & Wu, C. (2023). Thermal-fluid-structure coupling analysis of void defect in friction stir welding. Inter-national Journal of Mechanical Sciences, 241, 107959. https://doi.org/10.1016/j.ijmecsci.2022.107969

Tapia, S., Aguilera, G., Rojas, L. & García, J. (2024). Predictive maintenance based on machine learning: A systematic literature review and perspectives in industry 4.0. Avances en Ciencia e Ingeniería, 15 (4), 63–93. https://doi.org/10.65093/aci.v15.n4.2024.3

Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P. & Dawes, C.J. (1991). Friction-stir butt welding. International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8.

Descargas

Publicado

30-09-2025

Cómo citar

Martínez, Y., Rojas, L., Tapia, S., Aguilera, G., & Bazan, V. (2025). Predicción de Defectos de Vacío en Soldadura por Fricción-Agitación mediante Algoritmos de Aprendizaje Automático. Avances En Ciencia E Ingeniería, 16(3), 41–62. https://doi.org/10.65093/aci.v16.n3.2025.36