Diseño Conceptual de Algoritmos Híbridos para la Detección Temprana de Fallas Mecánicas en Sistemas de Transmisión de Correas Transportadoras en Minería

Autores/as

DOI:

https://doi.org/10.65093/aci.v16.n3.2025.37

Palabras clave:

detección temprana de fallas, correas transportadoras, algoritmos híbridos, fusión de datos

Resumen

El presente trabajo aborda el diseño conceptual de una metodología híbrida para la detección temprana de fallas mecánicas en el sistema de transmisión de una correa transportadora en la industria minera. El objetivo principal es mitigar las detenciones no programadas y los altos costos operativos asociados. La metodología integra el análisis de dos fuentes de datos: vibración y temperatura. Mediante el preprocesamiento de señales, se aplica la Transformada Rápida de Fourier (FFT) para el análisis espectral y la fusión de datos se realiza extrayendo el Valor Cuadrático Medio (RMS) por bandas de frecuencia y alineándolo con la data térmica. Posteriormente, se implementa un análisis segmentado de la progresión de estas características para establecer umbrales de alarma rigurosos y cuantitativos. Estos criterios permiten monitorear la inestabilidad y la energía vibratoria a lo largo del tiempo, identificando el estado incipiente de fallas críticas (rodamientos, desalineación). El enfoque sienta las bases para un sistema predictivo robusto, contribuyendo a la optimización del mantenimiento en el contexto de la Minería 4.0.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abidi, M.H., Mohammed, M.K. & Alkhalefah, H. (2022). Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability (Switzerland), 14 (6), 3387. https://doi.org/10.3390/su14063387

Alharbi, F., Al-Qathani, M., Al-Humaid, A., Al-Qahtani, F. & Al-Dossari, S. (2023). A brief review of acoustic and vibration signal-based fault detection for belt conveyor idlers using ml models. Sensors, 23 (4), 1902. https://doi.org/10.3390/s23041902

Baek, S. (2021). System integration for predictive process adjustment and cloud computing-based real-time condition monitoring of vibration sensor signals in automated storage and retrieval systems. The International Journal of Advanced Manufacturing Technology, 114, 11–26. https://doi.org/10.1007/s00170-021-06652-z

Chu, T., Wang, L. & Li, Y. (2024). A review of vibration analysis and its applications. Heliyon, 10 (1), e23132. https://doi.org/10.1016/j.heliyon.2024.e26282

Çinar, Z.M., Nuhu, A.A., Zeeshan, Q., Korhan, O., Asmael, M. & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability (Switzerland), 12 (19), 8211. https://doi.org/10.3390/su12198211

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., et al. (2020). Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298

García, J., Rios-Colque, L., Peña, Á. & Rojas, L. (2025). Condition monitoring and predictive maintenance in industrial equipment: An nlp-assisted review of signal processing, hybrid models, and implementation challenges. Applied Sciences, 15 (10), 5465. Article number 5465; open access journal. https://doi.org/10.3390/app15105465

Hector, I., Schlogl, F. & Tjoa, A.M. (2024). Predictive maintenance in industry 4.0: a survey of machine learning techniques. Journal of Industrial Information Integration, 37, 100463. https://doi.org/10.7717/peerj-cs.2016

Hoffmann, M.A. & Lasch, R. (2024). Tackling industrial downtimes with artificial intelligence in data-driven maintenance. ACM Computing Surveys, 56 (4), 82. https://doi.org/10.1145/3623378

Jin, Y.X., Geng, J., Lv, C., Chi, Y. & Zhao, T.D. (2023). A methodology for equipment condition simulation and maintenance threshold optimization oriented to the influence of multiple events. Reliability Engineering System Safety, 229, 108879. https://doi.org/10.1016/j.ress.2022.108879

Li, C., Wang, Y. & Zhang, J. (2025a). Bearing fault diagnosis based on fft-cnn-bigru. Proceedings of the 2025 3rd International Conference on Electrical, Electronics and Information Engineering. https://doi.org/10.1145/3727648.3727793

Li, X., Chen, J. & Li, Y. (2025b). Multi-sensor data fusion and vibro-acoustic feature extraction for rotating machinery fault diagnosis. IEEE Access, 13, 1–1.

Liu, Y., Li, Z., Zhang, H. & Wang, X. (2021). Research on the fault analysis method of belt conveyor based on vibration signal. Measurement, 184, 108879. https://doi.org/10.1016/j.measurement.2021.110177

Makrouf, I., El Badaoui, M., and Guillet, F. (2025). A novel framework for multi-sensor data fusion in bearing fault diagnosis based on transfer learning. Advanced Engineering Informatics, 63, 102132.

Martínez, Y., Rojas, L., Peña, A., Valenzuela, M., Hernández, B. & García, J. (2024). Fractional pinns: New frontiers for long-range memory in continuum models. Avances en Ciencia e Ingeniería, 15 (3), 93–110. https://doi.org/10.65093/aci.v15.n3.2024.10

Ndongue Esseme, E., Ndi, F. & Abessolo, G.O. (2025). A simplified approach to failure analysis of ball bearings using fast fourier transform. PLOS ONE, 20 (1), e0336163. https://doi.org/10.1371/journal.pone.0336163

Nguyen, V.T., Do, P. & Grall, A. (2022). Artificial-intelligence-based maintenance decision-making and opti-mization for multi-state component systems. Reliability Engineering System Safety, 228, 108757. https://doi.org/10.1016/j.ress.2022.108757

Randall, R.B. (2021). Vibration-based condition monitoring: industrial, automotive and aerospace applications. John Wiley Sons. https://doi.org/10.1002/9781119477631

Rojas, L., León, F., Bazan, V. & Hernández, B. (2024). Aproximaciones basadas en distancias ergódicas y mezclado caótico en pilas de lixiviación. Avances en Ciencia e Ingeniería, 15 (2), 37–50. https://doi.org/10.65093/aci.v15.n2.2024.12

Rojas, L., Hernández, B. & García, J. (2025a). A systematic review of intelligent agents, language models, and recurrent neural networks in industrial maintenance: Driving value creation for the mining sector. International Journal of Intelligent Systems, 2025 (1), Article 9953223. Open access review article. https://doi.org/10.1155/int/9953223

Rojas, L., Peña, Á. & García, J. (2025b). Ai-driven predictive maintenance in mining: A systematic literature review on fault detection, digital twins, and intelligent asset management. Applied Sciences, 15 (6), 3337. Article number 3337; open access journal. https://doi.org/10.3390/app15063337

Safizadeh, M.S. & Latifi, S.K. (2014). Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Information Fusion, 18, 1–8. https://doi.org/10.1016/j.inffus.2013.10.002

Sun, D., Li, Y., Jia, S., Feng, K. & Liu, Z. (2023). Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data. Information Fusion, 94, 286–309. https://doi.org/10.1016/j.inffus.2023.01.020

Tapia, S., Aguilera, G., Rojas, L. & García, J. (2024). Predictive maintenance based on machine learning: A systematic literature review and perspectives in industry 4.0. Avances en Ciencia e Ingeniería, 15 (4), 63–93. https://doi.org/10.65093/aci.v15.n4.2024.3

Wu, Y., Li, J. & Wang, H. (2025). The fault diagnosis of rolling bearings based on fft-se-resnet. Machines, 14 (3), 152. https://doi.org/10.3390/act14030152

Descargas

Publicado

30-09-2025

Cómo citar

Tapia, S., Aguilera, G., Aguilera, Y., Rojas, L., & Bazan, V. (2025). Diseño Conceptual de Algoritmos Híbridos para la Detección Temprana de Fallas Mecánicas en Sistemas de Transmisión de Correas Transportadoras en Minería. Avances En Ciencia E Ingeniería, 16(3), 63–76. https://doi.org/10.65093/aci.v16.n3.2025.37