Un Marco Teórico para la Evolución de Campos Cosmológicos con Operadores Neuronales Físicos y Aprendizaje Profundo Geométrico

Autores/as

DOI:

https://doi.org/10.65093/aci.v16.n4.2025.44

Palabras clave:

cosmología, operadores neuronales, redes neuronales de grafos, materia oscura

Resumen

los modelos cosmológicos estándar. Proponemos un marco teórico unificado que sintetiza seis paradigmas avanzados de aprendizaje automático para modelar la evolución de campos de materia oscura y la dinámica de la red cósmica. Este marco integra (1) Operadores Neuronales (NO) para aprender resolvedores de Ecuaciones Diferenciales Parciales (EDP) en el límite continuo, (2) Flujos Normalizadores (NF) para inferencia bayesiana basada en simulación con verosimilitudes exactas, (3) métodos topológicos y geométricos para caracterizar la estructura de la red cósmica, (4) teorías de campo efectivas (EFT) y coarse-graining para modelar la dinámica de la materia a múltiples escalas, (5) inferencia causal para desenredar efectos sistemáticos de la física subyacente, y (6) autoencoders geométricos para aprender representaciones latentes que preservan simetrías. Argumentamos que la hibridación de estos enfoques ofrece una ruta prometedora para construir emuladores cosmológicos de alta fidelidad, computacionalmente eficientes y físicamente consistentes, capaces de superar las limitaciones de los métodos actuales y explotar la riqueza de los datos de los próximos sondeos a gran escala.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J.P., Kornbluth, M., et al. (2022). E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13, 2453. https://doi.org/10.1038/s41467-022-29939-5

Bronstein, M.M., Bruna, J., Cohen, T. & Veličković, P. (2021). Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint. https://doi.org/10.48550/arXiv.2104.13478

Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46 (2), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X

Carrasco, J.J.M., Hertzberg, M.P. & Senatore, L. (2012). The effective field theory of cosmological large scale structures. Journal of High Energy Physics, 2012, 082. https://doi.org/10.1007/JHEP09(2012)082

Chadebec, C. & Allassonnière, S. (2022). A geometric perspective on variational autoencoders. In Advances in Neural Information Processing Systems, volume 35. https://doi.org/10.48550/arXiv.2209.07370

Chen, R.T.Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. (2018). Neural ordinary differential equations. In Advances in Neural Information Processing Systems, volume 31. https://doi.org/10.48550/arXiv.1806.07366

Cranmer, K., Brehmer, J. & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117 (48), 30055–30062. https://doi.org/10.1073/pnas.1912789117

Dax, M., Wildberger, J., Buchholz, S., Green, S.R., Macke, J.H. & Schölkopf, B. (2023). Flow matching for scalable simulation-based inference. In Advances in Neural Information Processing Systems, volume 36. https://doi.org/10.48550/arXiv.2305.17161

Edelsbrunner, H. & Harer, J.L. (2010). Computational Topology: An Introduction. American Mathematical Society. ISBN 978-0-8218-4925-5

Gabbard, H., Messenger, C., Heng, I.S., Tonolini, F. & Murray-Smith, R. (2022). Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nature Physics, 18, 112–117. https://doi.org/10.1038/s41567-021-01425-7

Garuda, N., Wu, J.F., Nelson, D. & Pillepich, A. (2024). Estimating dark matter halo masses in simulated galaxy clusters with graph neural networks. arXiv preprint. https://doi.org/10.48550/arXiv.2411.12629

Gong, Z., Halder, A., Barreira, A., Seitz, S. & Friedrich, O. (2023). Cosmology from the integrated shear 3-point correlation function: simulated likelihood analyses with machine-learning emulators. Journal of Cosmology and Astroparticle Physics, 2023 (07), 040. https://doi.org/10.1088/1475-7516/2023/07/040

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W., et al. (2019). Learning to predict the cosmological structure formation. Proceedings of the National Academy of Sciences, 116 (28),13825–13832. https://doi.org/10.1073/pnas.1821458116

Ivanov, M.M. (2022). Effective field theory for large scale structure. arXiv preprint. https://doi.org/10.48550/arXiv.2212.08488

Jamieson, D., Li, Y., Alves de Oliveira, R., Villaescusa-Navarro, F., Ho, S. & Spergel, D.N. (2023). Field-level neural network emulator for cosmological N-body simulations. The Astrophysical Journal, 952 (2), 145. http://doi.org/10.3847/1538-4357/acdb6c

Jeffrey, N., Lanusse, F., Lahav, O. & Starck, J-L. (2020). Deep learning dark matter map reconstructions from DES SV weak lensing data. Monthly Notices of the Royal Astronomical Society, 492 (4), 5023–5029. https://doi.org/10.1093/mnras/staa127

Kneer, S., Sayadi, T., Sipp, D., Schmid, P. & Rigas, G. (2021). Symmetry-aware autoencoders: s-PCA and s-nlPCA. arXiv preprint. https://doi.org/10.48550/arXiv.2111.02893

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., et al. (2023). Neural operator: Learning maps between function spaces with applications to PDEs. Journal of Machine Learning Research, 24 (89), 1–97. https://dl.acm.org/doi/10.5555/3648699.3648788

Lee, J.Y. & Villaescusa-Navarro, F. (2025). Cosmology with topological deep learning. The Astrophysical Journal, 989, 47. http://doi.org/10.3847/1538-4357/ade806

León, F., Rojas, L., Bazán, V., Martínez, Y., Peña, A. & Garcia, J. (2025). A systematic review of copper heap leaching: Key operational variables, green reagents, and sustainable engineering strategies. Processes, 13 (5), 1513. https://doi.org/10.3390/pr13051513

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., et al. (2024). Physics-informed neural operator for learning partial differential equations. ACM/IMS Journal of Data Science, 1(3), 1–27. https://doi.org/10.1145/3648506

Lipman, Y., Chen, R.T.Q., Ben-Hamu, H., Nickel, M. & Le, M. (2023). Flow matching for generative modeling. In International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2210.02747

Martínez, Y., Rojas, L., Peña, A., Valenzuela, M., Hernández, B. & García, J. (2024). Pinns fraccionarias: nuevos horizontes para la memoria prolongada en modelos continuos. Avances en Ciencias e Ingeniería, 15 (3), 93–110. https://doi.org/10.65093/aci.v15.n3.2024.10

Mishra, A.K. and Tolley, E. (2025). SPINN: Advancing cosmological simulations of fuzzy dark matter with physics informed neural networks. The Astrophysical Journal, 988, 114. http://doi.org/10.3847/1538-4357/ade43e

Mootoovaloo, A., García-García, C., Alonso, D. & Ruiz-Zapatero, J.(2025). EMUFLOW: normalizing flows for joint cosmological analysis. Monthly Notices of the Royal Astronomical Society, 536 (1), 190–208. https://doi.org/10.1093/mnras/stae2604

Nasiri, A. & Bepler, T. (2022). Unsupervised object representation learning using translation and rotation group equivariant VAE. In Advances in Neural Information Processing Systems, volume 35. https://doi.org/10.48550/arXiv.2210.12918

Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S. & Lakshminarayanan, (2021). Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22 (57), 1–64. https://dl.acm.org/doi/abs/10.5555/3546258.3546315

Park, S.-H., Ha, S. & Kim, J-K. (2023). A general model-based causal inference method overcomes the curse of synchrony and indirect effect. Nature Communications, 14, 4287. https://doi.org/10.1038/s41467-023-39983-4

Pietroni, M. (2012). Coarse-grained cosmological perturbation theory. Journal of Cosmology and Astroparticle Physics, 2012 (01), 019. https://doi.org/10.1088/1475-7516/2012/01/019

Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B.J.T. et al. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society, 465 (4), 4281–4310. https://doi.org/10.1093/mnras/stw2862

Pranav, P., van de Weygaert, R., Vegter, G., Jones, B.J.T., Adler, R.J., Feldbrugge, J., et al. (2019). Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals. Monthly Notices of the Royal Astronomical Society, 485 (3), 4167–4208. https://doi.org/10.1093/mnras/stz541

Ravanbakhsh, S., Oliva, J., Frber, S., Liu, B., Schneider, J. & Poczos, B. (2017). Estimating cosmological parameters from the dark matter distribution. In International Conference on Machine Learning, pages 2407–2416. https://dl.acm.org/doi/10.5555/3045390.3045644

Rojas, L., León, F., Bazan, V. & Hernández, B. (2024). Aproximaciones basadas en distancias ergódicas y mezclado caótico en pilas de lixiviación. Avances en Ciencias e Ingeniería, 15 (2), 37–50. https://doi.org/10.65093/aci.v15.n2.2024.12

Rojas-Valdivia, L. (2025). Geometría de Kerr y ley del área de Hawking: espectroscopía de anillo y ciencia de datos reproducible en agujeros negros rotatorios. Avances en Ciencias e Ingeniería, 16 (1), 47–58. https://doi.org/10.65093/aci.v16.n1.2025.22

Satorras, V.G., Hoogeboom, E. & Welling, M. (2021). E(n) equivariant graph neural networks. In International Conference on Machine Learning, pages 9323–9332. https://proceedings.mlr.press/v139/satorras21a.html

Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A., et al. (2021). Toward causal representation learning. Proceedings of the IEEE, 109 (5), 612–634. http://doi.org/10.1109/JPROC.2021.3058954

Shirasaki, M., Yoshida, N. & Ikeda, S. (2019). Denoising weak lensing mass maps with deep learning. Physical Review D, 100, 043527. https://doi.org/10.1103/PhysRevD.100.043527

Sousbie, T. (2011). The persistent cosmic web and its filamentary structure—I. Theory and implementation. Monthly Notices of the Royal Astronomical Society, 414 (1), 350–383. https://doi.org/10.1111/j.1365-2966.2011.18394.x

Sousbie, T., Pichon, C. & Kawahara, H. (2011). The persistent cosmic web and its fila-mentary structure—II. Illustrations. Monthly Notices of the Royal Astronomical Society, 414 (1), 384–403. https://doi.org/10.1111/j.1365-2966.2011.18395.x

Stachurski, F., Messenger, C. & Hendry, M. (2024). Cosmological inference using gravitational waves and normalizing flows. Physical Review D, 109, 123547. https://doi.org/10.1103/PhysRevD.109.123547

Uhlemann, C., Kopp, M. & Haugg, T. (2015). Coarse-grained cosmological perturbation theory: Stirring up the dust model. Physical Review D, 91, 084010. https://doi.org/10.1103/PhysRevD.91.084010

Villaescusa-Navarro, F., Anglés-Alcázar, D., Genel, S., Spergel, D.N., Somerville, R.S., Dave, R., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations. The Astrophysical Journal, 915 (1), 71. http://doi.org/10.3847/1538-4357/abf7ba

Villanueva-Domingo, P. & Villaescusa-Navarro, F. (2022). Inferring halo masses with graph neural networks. The Astrophysical Journal, 935 (1), 30. https://doi.org/10.3847/1538-4357/ac7aa3

von Kügelgen, (2024). Identifiable causal representation learning: Unsupervised, multi-view, and multi-environment. arXiv preprint. https://doi.org/10.48550/arXiv.2406.13371

Wilding, G., Nevenzeel, K., van de Weygaert, R., Vegter, G., Pranav, P., Jones, B.J.T., et al. (2021). Persistent homology of the cosmic web—I. Hierarchical topology in ΛCDM cosmologies. Monthly Notices of the Royal Astronomical Society, 507 (2), 2968–2990. https://doi.org/10.1093/mnras/stab2326

Winter, R., Bertolini, M., Le, T., Noé, F. & Clevert, D.-A. (2022). Unsupervised learning of group invariant and equivariant representations. In Advances in Neural Information Processing Systems, volume 35. https://doi.org/10.48550/arXiv.2202.07559

Descargas

Publicado

31-12-2025

Cómo citar

Rojas, L. (2025). Un Marco Teórico para la Evolución de Campos Cosmológicos con Operadores Neuronales Físicos y Aprendizaje Profundo Geométrico. Avances En Ciencia E Ingeniería, 16(4), 45–56. https://doi.org/10.65093/aci.v16.n4.2025.44