Mathematical modeling of biological interactions: formalisms and contemporary applications

Authors

  • Luis Rojas Doctorado en Industria Inteligente, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
  • Juan Castillo Universidad de La Serena, Facultad de Ciencias, Departamento de Biología. , La Serena 1720169, Chile
  • José García Doctorado en Industria Inteligente, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

Keywords:

spectral theory, Laplacian graphs, mathematical biology, ecological interactions

Abstract

This paper introduces an advanced mathematical framework for describing biological interactions through spectral graph theory. We examine differential equations coupled with various Laplacians (classical, signless, and normalized) to address competition, predation, and evolutionary cooperation. We cover stability analyses, bifurcations, and computational validation using empirical data. Network topological properties, including connectivity and modularity, significantly influence ecosystem robustness and the spread of epidemic phenomena. Our results illustrate the effectiveness of combining graph theory and differential equations for modeling large ecological and genomic networks at scale. Moreover, future perspectives are discussed, highlighting the integration of spectral preconditioners and deep learning. This approach provides a solid foundation for research in mathematical biology and the management of natural resources.

Downloads

Download data is not yet available.

Downloads

Published

2024-12-28

How to Cite

Rojas, L., Castillo, J., & García, J. (2024). Mathematical modeling of biological interactions: formalisms and contemporary applications. Avances En Ciencia E Ingeniería, 15(4), 47–62. Retrieved from https://acijournal.cl/index.php/ojs/article/view/2