Aqueous supramolecular assemblies generated by novel chitosan and bile acids derivatives with potential biomedical use

Authors

  • Aida Liliana Barbosa Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Laboratorio de Investigaciones en Catálisis y Nuevos materiales-LICATUC, Programa de Química, Campus de Zaragocilla, Cartagena - Colombia https://orcid.org/0000-0002-9290-1564
  • Stevinson Caicedo Mora Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Laboratorio de Investigaciones en Catálisis y Nuevos materiales-LICATUC, Programa de Química, Campus de Zaragocilla, Cartagena - Colombia https://orcid.org/0009-0002-9169-8565

DOI:

https://doi.org/10.65093/aci.v16.n3.2025.34

Keywords:

deoxycholic acid, chitosan gels, FT-ATR deconvolution, AI-assisted modeling

Abstract

Deoxycholic acid (DCA) modified with chitosan in ionic aqueous solution created amphiphilic polymers that self-assembled. FTIR-ATR spectroscopy allowed the study of its spatial and chemical specificity by identifying C-H, O-H, and N-H vibrations in the spectral range from (2700 cm⁻¹ to 3700 cm⁻¹). The OH stretching band of water was resolved by deconvolution and Gaussian curve fitting, classifying the type of strong hydrogen bonds (~3200-3450 cm⁻¹), weak bonds, or free OH (~3550-3650 cm⁻¹). their distribution allowed us to propose 3D aggregate structures with AI-assisted modeling (MAIA), which coexist with each other through hydrophobic and van der Waals forces, governed by predictable thermodynamic principles and the influence of the synthesis method. Their thermal stability was determined in a range of 20°C-60°C, observing structural rearrangements that formed elastic hydrogels, which changed to a rigid arrangement generating electrostatic cooperativity when the temperature increased. These studies provided input for their use as host systems for hydrophobic molecules and other medical applications.

Downloads

Download data is not yet available.

References

Baker, M.J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.J., Dorling, K.M., et al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9 (8), 1771–1791. https://doi.org/10.1038/nprot.2014.110

Barique, M.A., Tsuchida, E., Ohira, A. & Tashiro, K. (2018). Effect of elevated temperatures on the states of water and their correlation with the proton conductivity of Nafion. ACS Omega, 3(1), 349–360. https://doi.org/10.1021/acsomega.7b01765

Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (Bioenergetics), 1767 (9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

Bellini, A.M., Mencini, E., Quaglio, M. P., Guarneri, M. & Fini, A. (1990). Archiv der Pharmazie, 323, 201. https://doi.org/10.1002/ardp.19903230404

Bhat, S., Leikin-Gobbi, D., Konikoff, F.M. & Maitra, U. (2006). Biochimica et Biophysica Acta, 1760, 1489. https://doi.org/10.1016/j.bbagen.2006.06.013

Branca, C., D’Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., et al. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer, 99, 614–622. https://doi.org/10.1016/j.polymer.2016.07.086

Che, Y., Gaitzsch, J., Liubimtsev, N., Zschoche, S., Bauer, T., Appelhans, D., et al. (2020). Double cross-linked supramolecular hydrogels with tunable properties based on host–guest interactions. Soft Matter, 16 (29), 6733–6742. https://doi.org/10.1039/D0SM00833H

Chialvo, A.A. & Cummings, P.T. (1994). Hydrogen bonding in supercritical water. The Journal of Chemical Physics, 101 (5), 4466–4469. https://doi.org/10.1063/1.467432

Culver, H.R., Clegg, J.R. & Peppas, N.A. (2018). Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery. Accounts of Chemical Research, 51 (11), 2600–2608. https://doi.org/10.1021/acs.accounts.6b00533

Dong, X., Yao, F., Jiang, L., Liang, L., Sun, H., He, S., et al. (2022). Facile preparation of a thermosensitive and antibiofouling physically crosslinked hydrogel/powder for wound healing. Journal of Materials Chemistry B, 10 (13), 2215–2229. https://doi.org/10.1039/D2TB00027J

Enev, V., Sedláček, P., Řihák, M., Kalina, M. & Pekař, M. (2022). IR-supported thermogravimetric analysis of water in hydrogels. Frontiers in Materials, 9, 931303. https://doi.org/10.3389/fmats.2022.931303

Fielden, S.D.P. (2025). Ostwald ripening as a tool for controlling dynamic nanomaterials. Advanced Materials Technologies. https://doi.org/10.1002/agt2.70116

Flór, M., Wilkins, D.M., de la Puente, M., Laage, D., Cassone, G., Hassanali, A., et al. (2024). Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science, 386 (6712), eads4369. https://doi.org/10.1126/science.ads4369

Gallo, P. & Rovere, M. (2021). Physics of liquid matter. Springer International Publishing. https://doi.org/10.1007/978-3-030-68349-8

Gansner, E.R. & North, S.C. (2000). An open graph visualization system and its applications to software engineering. Software: Practice and Experience, 30 (11), 1203–1233. https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N

Gong, J.P. (2023). Polymer Physics Prize Winner: Toughening hydrogels with sacrificial bonds. Bulletin of the American Physical Society. American Physical Society March Meeting 2023. Retrieved from https://ui.adsabs.harvard.edu/abs/2023APS..MAR.C6002G

Gorbaty, Y.E. & Kalinichev, A.G. (1995). Hydrogen bonding in supercritical water. 1. Experimental results. The Journal of Physical Chemistry, 99 (15), 5336–5340. https://doi.org/10.1021/j100015a016

Guo, Y., Bae, J., Fang, Z., Li, P., Zhao, F. & Yu, G. (2020). Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews, 120(15), 7642–7707. https://doi.org/10.1021/acs.chemrev.0c00345

Hoffman, A.S., Afrasiabi, A. & Dong, L.C. (1986). Thermally reversible hydrogels. II: Delivery and selective removal of substances from aqueous solutions. Journal of Controlled Release, 4(3), 213–222. https://doi.org/10.1016/0168-3659(86)90045-4

Jeffrey, G.A. (1997). An introduction to hydrogen bonding. Oxford University Press.

Kauppinen, J.K., Moffatt, D.J., Mantsch, H.H. & Cameron, D.G. (1981). Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Applied Spectroscopy, 35, 271–276.

Kaur, H., Rana, B., Tomar, D., Kaur, S. & Jena, K.C. (2021). Fundamentals of ATR-FTIR spectroscopy and its role for probing in-situ molecular-level interactions. In Modern techniques of spectroscopy (pp. 3–37). Springer Nature. https://doi.org/10.1007/978-981-33-6084-6_1

Kim, K., Kwon, S., Park, J. H., Chung, H., Jeong, S. Y., & Kwon, I. C. (2005). Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates. Biomacromolecules, 6, 1154–1158. https://doi.org/10.1021/bm049305m

Kobko, N. & Dannenberg, J.J. (2003). Cooperativity in amide hydrogen bonding chains: Relation between energy, position, and H-bond chain length in peptide and protein folding models. The Journal of Physical Chemistry A, 107 (48), 10389–10395. https://doi.org/10.1021/jp0365209

Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H. & Domb, A.J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104, 12, 6017–6084. https://doi.org/10.1021/cr030441b

Kumar, M.N.V R. (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers, 46 (1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., et al. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 8 (5), 1567-1636. https://doi.org/10.3390/md8051567

Laage, D., Elsaesser, T. & Hynes, J.T. (2017). Water dynamics in the hydration shells of biomolecules. Chemical Reviews, 117 (16), 10694–10725. https://doi.org/10.1021/acs.chemrev.6b00765

Ladeira, N.M.B., Donnici, C.L., de Mesquita, J.P. & Pereira, F.V. (2021). Preparation and characterization of hydrogels obtained from chitosan and carboxymethyl chitosan. Journal of Polymer Research, 28 (335). https://doi.org/10.1007/s10965-021-02682-z

Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., et al. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8 (8), 2533–2541. https://doi.org/10.1021/bm070014y

Lawson, G., Ogwu, J. & Tanna, S. (2014). Counterfeit tablet investigations: Can ATR FT/IR provide rapid targeted quantitative analyses? Journal of Analytical & Bioanalytical Techniques, 5 (6), 214. https://doi.org/10.4172/2155-9872.1000214

Lee, K.Y., Kwon, I.C., Kim, Y.H., Jo, W.H. & Jeong, S. Y. (1998). Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules, 31, 378–383. https://doi.org/10.1021/ma9711304

Libowitzky, E. (1999). Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130 (8), 1047–1059. https://doi.org/10.1007/s007060050137

López de la Paz, M. (1999). Cooperatividad de enlaces de hidrógeno en el reconocimiento molecular de carbohidratos (Tesis doctoral inédita). Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química Orgánica. http://hdl.handle.net/10486/671250

Ma, S., Yu, B., Pei, X. & Zhou, F. (2016). Structural hydrogels. Polymer, 98, 516–535. https://doi.org/10.1016/j.polymer.2016.06.051

Manconi, M., Aparicio, J., Seyler, D., Vila, A.O., Figueruelo, J.F. & Molina, F. (2005). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 271, 102. https://doi.org/10.1016/j.colsurfa.2005.05.050

Mazza, M.G., Stokely, K., Pagnotta, S.E., Bruni, F., Stanley, H.E. & Franzese, G. (2011). More than one dynamic crossover in protein hydration water. Proceedings of the National Academy of Sciences of the United States of America, 108 (50), 19873–19878. https://doi.org/10.1073/pnas.1104299108

Mejía-Torres, D.G., Espinosa-Andrews, H. & Rodríguez-Rodríguez, R. (2024). Self-healing, injectable chitosan-based hydrogels: Structure, properties, and applications. Materials Advances, 5 (1). https://doi.org/10.1039/D4MA00131A

Moll, V., Beć, K.B., Grabska, J. & Huck, C.W. (2022). Investigation of water interaction with polymer matrices by near-infrared (NIR) spectroscopy. Molecules, 27(18), 5882. https://doi.org/10.3390/molecules27185882

Mortera Domínguez, G. M. (2003). Modificación hidrofóbica de conjugados biocatalíticos basados en quitosano (Tesis de maestría). Instituto de Biotecnología, Universidad Nacional Autónoma de México. Recuperado de https://hdl.handle.net/20.500.14330/TES01000325920

Muzzarelli, R. & Muzzarelli, C. (2008). Chitin and chitosan hydrogels. In K. G. Harding (Ed.), Chitin and chitosan: Sources, chemistry and applications (pp. 849–888). Woodhead Publishing. https://doi.org/10.1533/9781845695873.849

Paladini, G., Venuti, V., Crupi, V., Majolino, D., Fiorati, A. & Punta, C. (2020). FTIR-ATR analysis of the H-bond network of water in branched polyethyleneimine/TEMPO-oxidized cellulose nano-fiber xerogels. Cellulose, 27 (15), 8605–8618. https://doi.org/10.1007/s10570-020-03248-9

Palmer, M.E., Graham, R.A., Williams, J.A. & Blanchard, J.S. (2007). Infrared spectroscopic studies of bile acids and their interaction with phospholipid membranes. Biochimica et Biophysica Acta (Biomembranes), 1768 (2), 310–318. https://doi.org/10.1016/j.bbamem.2006.11.012

Parekh, P.Y., Patel, V.I., Khimani, M.R. & Bahadur, P. (2023). Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Advances in Colloid and Interface Science, 312, 102844. https://doi.org/10.1016/j.cis.2023.102844

Parra-Barraza, H., Burboa, M., Sanchez-Vázquez, M., Juárez, J., Goycoolea, F. & Valdez, M. (2005). Chitosan-cholesterol and chitosan-stearic acid interactions at the air-water interface. Biomacromolecules, 6 (4), 2416–2426. https://doi.org/10.1021/bm050145o

Peppas, N.A. & Merrill, E.W. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks in water. Journal of Applied Polymer Science, 21 (7), 1763–1770. https://doi.org/10.1002/app.1977.070210705

Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q. & Ding, Y.D. (2001). States of water in different polymers: DSC and FTIR studies. Polymer, 42 (20), 8461–8467. https://doi.org/10.1016/S0032-3861(01)00358-5

Qin, C., Du, Y., Xiao, L., Li, Z. & Gao, X. (2002). Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polymer Degradation and Stability, 76 (2), 211–218. https://doi.org/10.1016/S0141-3910(02)00016-2

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31 (7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

Röckert, A., Kullgren, J. & Hermansson, K. (2022). Predicting frequency from the external chemical environment: OH vibrations on hydrated and hydroxylated surfaces. Journal of Chemical Theory and Computation, 18 (12), 7683–7694. https://doi.org/10.1021/acs.jctc.2c00789

Rodriguez-Cruz, J.J., Chapa-Villarreal, F.A., Duggal, I. & Peppas, N.A. (2025). Advanced rational design of polymeric nanoparticles for the controlled delivery of biologics. Journal of Controlled Release, 401, 1–15. https://doi.org/10.1016/j.jconrel.2024.12.015

Rusu, A.G., Popa, M.I., Lisa, G. & Vereștiuc, L. (2015). Thermal behavior of hydrophobically modified hydrogels using TGA/FTIR/MS analysis technique. Thermochimica Acta, 613, 28–40. https://doi.org/10.1016/j.tca.2015.05.018

Russo, J. & Tanaka, H. (2014). Understanding water’s anomalies with locally favored structures. Nature Communications, 5 (1), 3556. https://doi.org/10.1038/ncomms4556

Shenghua, L., Zhang, S., Zuo, J., Liang, S., Yang, J., Wang, J., et al. (2023). Progress in preparation and properties of chitosan-based hydrogels. International Journal of Biological Macromolecules, 242 (2), 124915. https://doi.org/10.1016/j.ijbiomac.2023.124915

Sogias, I.A., Khutoryanskiy, V.V. & Williams, A.C. (2010). Exploring the factors affecting the solubility of chitosan in water. Macromolecular Chemistry and Physics, 211 (4), 426–433. https://doi.org/10.1002/macp.200900385

Soto Tellini, V.H. (2006). Estructuras supramoleculares generadas por ciclodextrinas, adamantanos y ácidos biliares Tesis (Doctorado en Química). Facultade de Ciencias, Departamento de Química Física, Universidade de Santiago de Compostela.

Soto, V.H., Jover, A., Meijide, F., Vázquez Tato, J., Galantini, L. & Pavel, N. V. (2007). Supramolecular hydrogels from bile acid derivatives. Advanced Materials, 19 (12), 1752–1757. https://doi.org/10.1002/adma.200602233

Su, E., Yelemessova, G., & Toleutay, G. (2024). Strain rate sensitive polyampholyte hydrogels via well-dispersed XLG sheets. Polymer Bulletin, 81 (22), 10631–10644. https://doi.org/10.1007/s00289-023-04971-0

Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., et al. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Materials, 12 (10), 932–937. https://doi.org/10.1038/nmat3713

Tanaka, T., Annaka, M., Ilmain, F., Ishii, K., Kokufuta, E., Suzuki, A., et al. (1992). Phase transitions of gels. En Mechanics of Swelling (pp. 683–703). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76909-6_40

Toleutay, G., Su, E. & Yelemessova, G. (2023). Equimolar polyampholyte hydrogel synthesis strategies with adaptable properties. Polymers, 15 (14), 3131. https://doi.org/10.3390/polym15143131

Torii, H. (2015). Amide I vibrational properties affected by hydrogen bonding out-of-plane of the peptide group. The Journal of Physical Chemistry Letters, 6 (4), 727–733. https://doi.org/10.1021/acs.jpclett.5b00004

Tran, T., Lin, C., Chaurasia, S. & Lin, H. (2019). Elucidating the relationship between states of water and ion transport properties in hydrated polymers. Journal of Membrane Science, 574, 299–308. https://doi.org/10.1016/j.memsci.2019.02.012

Virtanen, E. & Kolehmainen, E. (2004). Use of bile acids in pharmacological and supramolecular applications. European Journal of Organic Chemistry, 2004 (18), 3385–3399. https://doi.org/10.1002/ejoc.200300699

Wang, Z., Pakoulev, A., Pang, Y. & Dlott, D. D. (2004). Vibrational substructure in the OH stretching transition of water and HOD. The Journal of Physical Chemistry A, 108 (19), 3957–3964. https://doi.org/10.1021/jp048545t

Willemen, H.M., de Smet, L.C.P.M., Koudijs, A., Stuart, M.C.A., Heikamp-de Jong, I.G.A.M., Marcelis, A.T. M., et al. (2002). Supramolecular polymers from hydrogen-bonded self-complementary monomers. Angewandte Chemie International Edition, 41(22), 4275–4279. https://doi.org/10.1002/1521-3773(20021115)41:22<4275::AID-ANIE4275>3.0.CO;2-0

Wilkins, F.M., de la Puente, D.M., Laage, D., Cassone, G., Hassanali, A. & Roke, S. (2024). Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science, 386 (6712), eads4369. https://doi.org/10.1126/science.ads4369

Yin, H., Akasaki, T., Lin, S.T., Kurokawa, T., Gong, J.P. & Osada, Y. (2013). Double network hydrogels from polyzwitterions: High mechanical strength and excellent antibiofouling properties. Journal of Materials Chemistry B, 1 (29), 3685–3693. https://doi.org/10.1039/c3tb20521a

Yoo, H. S., Lee, J. E., Chung, H., Kwon, I. C., & Jeong, S. Y. (2005). Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. Journal of Controlled Release, 103 (1), 235–243. https://doi.org/10.1016/j.jconrel.2004.11.033

Published

2025-09-30

How to Cite

Barbosa, A. L., & Mora, S. C. (2025). Aqueous supramolecular assemblies generated by novel chitosan and bile acids derivatives with potential biomedical use. Avances En Ciencia E Ingeniería, 16(3), 1–25. https://doi.org/10.65093/aci.v16.n3.2025.34