Radar, hyperspectral imaging and deep learning. Mining-monitoring tools for the southern cone of America: a literature review

Authors

  • Beatriz Hernández Centro de Observación de la Tierra, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
  • Vanesa Bazan CONICET–IIM, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
  • Luis Rojas Doctorado en Industria Inteligente, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
  • José García Doctorado en Industria Inteligente, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

DOI:

https://doi.org/10.65093/aci.v15.n3.2024.9

Keywords:

remote sensing, smart mining, ecosystem services, big data

Abstract

This research examines, through a process of several consecutive phases (identification, selection and critical synthesis), the role of remote sensing and advanced data analysis in mining. It analyzes how hyperspectral sensors, UAV or radar are applied to the detection of mining disturbances, acid drainage and deforestation, integrated with socio-environmental approaches that drive ecological restoration. From the evidence compiled, the relevance of collaborative methodologies and computational tools (big data, deep learning) to optimize decision making is recognized. A key finding is that smart mining can reconcile productivity and conservation of ecosystem services, provided that there is coordination between science, industry and local governance for continuous monitoring and timely mitigation of impacts.

Downloads

Download data is not yet available.

Published

2024-09-28

How to Cite

Hernández, B., Bazan, V., Rojas, L., & García, J. (2024). Radar, hyperspectral imaging and deep learning. Mining-monitoring tools for the southern cone of America: a literature review. Avances En Ciencia E Ingeniería, 15(3), 73–91. https://doi.org/10.65093/aci.v15.n3.2024.9